Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Quãng đường AB dài 540km nên nửa quãng đường AB dài 270km.
Gọi quãng đường ô tô và xe máy đã đi là S1 và S2.
Trong cùng một thời gian thì quãng đường tỉ lệ thuận với vận tốc.Do đó:
\(\frac{S_1}{V_1}=\frac{S_2}{V_2}=t\)(t là thời gian cần tìm)
Ta có:\(t=\frac{270-a}{65}=\frac{270-2a}{40}\)
\(\Rightarrow t=\frac{540-2a}{130}=\frac{270-2a}{40}=\frac{\left(540-2a\right)-\left(270-2a\right)}{130-40}=\frac{270}{90}=3\)
Vậy sau khi khởi hành 3 giờ thi ô tô cách M 1 khoản cách bằng 1/2 khoảng cách xe máy đến M.
Gọi x là thời gian đi được đến khi ô tô cách điểm M (M là điểm chính giữa quãng đường AB) một khoảng bằng 1/212 khoảng cách từ xe máy đến M.
Ta có quãng đường ô tô đi được là: 270 - 65x = 1/212(270 - 40x)
Giải phương trình ta được x = 3.
Vậy sau 3 giờ thì ô tô cách điểm M (M là điểm chính giữa quãng đường AB) một khoảng bằng 1/212 khoảng cách từ xe máy đến M.
Quãng đường AB dài 540 km
Nửa quãng đường AB là :
540:2= 270 ( km )
Gọi quãng đường ô tô và xe máy đã đi là s1 , s2
Trong cùng một thời gian thì quãng đường tỉ lệ thuận với vận tốc do đó
\(\frac{s_1}{v_1}\) = \(\frac{s_2}{v_2}\) = t ( t chính là thời gian cần tìm )
t= \(\frac{270-a}{65}\) = \(\frac{270-2a}{40}\)
t= \(\frac{540-2a}{130}\) = \(\frac{270-2a}{40}\) = \(\frac{\left(540-2a\right)-\left(270-2a\right)}{130-40}\) = \(\frac{270}{90}\) = 3
Vậy sau khi khởi hành 3 giờ thì ô tô cách M một khoảng bằng \(\frac{1}{2}\) khoảng cách từ xe máy đến M
Gọi x là thời gian ô tô đi từ M đến khi ô tô cách M 1 khoảng =1/2 khoảng cách từ xe máy tới M..
Theo đề bài, ta có: 270 - 65x = 1/2 (270 - 40x)
270 - 65x = 135 - 20x
270 - 135 = 65x - 20x
135 = 45x
x = 135 : 45
x = 3 (giờ)
Vậy sau 3 giờ thì ô tô cách M 1 khoảng = 1/2 khoảng cách từ xe máy tới M
Quãng đường AB dài 540km nên nửa quãng đường dài 270km
Gọi S1 ; S2; lần lượt là quãng đường mà ô tô và xe máy đi
Cùng một thởi gian, quãng đường và vận tốc là hai đại lượng tỉ lệ thuận nên
\(\frac{S_1}{65}=\frac{S_2}{40}\)
Ô tô cách M một khoảng bằng \(\frac{1}{2}\) khoảng cách từ xe máy đến M nên ta đặt
\(\hept{\begin{cases}S_1=270-a\\S_2=270-2a\end{cases}}\)
Lúc đó thì \(\frac{270-a}{65}=\frac{270-2a}{40}=\frac{\left(270-a\right)-\left(270-2a\right)}{65-40}\)
\(=\frac{a}{25}\)
\(\Rightarrow\frac{270-a}{65}=\frac{a}{25}\)
\(\Rightarrow\frac{90}{1625}a=\frac{54}{13}\Rightarrow a=75\)
Lúc đó \(t=\frac{270-75}{65}=3\)
Vậy sau 3 giờ thì ô tô cách M một khoảng bằng \(\frac{1}{2}\) khoảng cách từ xe máy đến M
gọi x là thời gian ô tô đi từ m
ta có : 270-65x=1/2
270-65x=135-20x
135=45x
x=135:45
x=3
vậy 3 giờ
Theo bài ra ta có: quãng đường AB dài 540km => Nửa quãng đường AB dài 270km.
Gọi quãng đường ô tô và xe máy đã đi là S1 và S2.
Trong cùng một thời gian thì quãng đường tỉ lệ thuận với vận tốc.
\(\dfrac{S_1}{V_1}=\dfrac{S_2}{V_2}=t\)
Ta có phương trinh:
\(\dfrac{270-a}{65}=\dfrac{270-a}{40}\Rightarrow t=\dfrac{270}{90}=3h\)
Vậy sau 3 giờ thì ô tô cách M 1 khoảng bằng 1/2 khoảng cách xe máy đến M