Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số khẩu trang công ti dự định may mỗi ngày là \(x\)(khẩu trang , \(x\in N^∗,x>0\))
số khẩu trang công ti thực tế may mỗi ngày là \(x+100\)(khảu trang)
Thời gian công ti dự dịnh hoàn thành công việc là \(\frac{6000}{x}\)(ngày)
Thời gian công ti thực tế hoàn thành công việc là \(\frac{6000}{x+100}\)(ngày)
Vì thời gian thực tế hoàn thành sớm hơn 2 ngày so với dự định, ta có phương trình:
\(\frac{6000}{x}-\frac{6000}{x+100}=2\)
\(\Leftrightarrow\frac{6000.\left(x+100\right)}{x.\left(x+100\right)}-\frac{6000x}{x.\left(x+100\right)}=\frac{2x.\left(x+100\right)}{x.\left(x+100\right)}\)
\(\Leftrightarrow6000x+600000-6000x=2x^2+200x\)
\(\Leftrightarrow2x^2+200x-600000=0\)
\(\Leftrightarrow x^2+100x-300000=0\)
\(\Leftrightarrow x^2-500x+600x-300000=0\)
\(\Leftrightarrow x.\left(x-500\right)+600.\left(x-500\right)=0\)
\(\Leftrightarrow\left(x-500\right).\left(x+600\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-500=0\\x+600=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=500\left(TM\right)\\x=-600\left(L\right)\end{cases}}}\)
Vậy số khẩu trang công ti dự định may mỗi ngày là \(500\)khẩu trang
Gọi x là khẩu trang cty may đc mỗi ngày theo dự định \(\left(x\inℕ^∗\right)\)
Sau khi bổ sung thêm công nhân thì mỗi ngày may đc: \(x+100\) ( khẩu trang)
Số ngày để may khẩu trang theo dự định là:\(\frac{6000}{x}\)(ngày)
Số ngày để mày khẩu trang khi bổ sung thêm công nhân là:\(\frac{6000}{x+100}\)(ngày)
Vì hoàn thành sớm hơn 2 ngày so với dự định nên ta có pt:
\(\frac{6000}{x}-\frac{6000}{x+100}=2\)
\(\Rightarrow6000\left(x+100\right)-6000x=2x\left(x+100\right)\)
\(\Rightarrow2x^2+200x-600000=0\)
\(\Rightarrow\orbr{\begin{cases}x=500\left(TM\right)\\x=-600\left(L\right)\end{cases}}\)
Vậy dự đinh mỗi ngày cty mày đc 500 chiếc khẩu trang
Lời giải:
Giả sử theo dự định mỗi giờ tổ sản xuất làm $a$ khẩu trang và làm trong $b$ giờ
Theo bài ra ta có:
$b=\frac{600}{a}$
$b-1=\frac{400}{a}+\frac{200}{a+10}$
$\Rightarrow 1=\frac{600}{a}-(\frac{400}{a}+\frac{200}{a+10})$
$\Leftrightarrow 1=\frac{200}{a}-\frac{200}{a+10}$
Kết hợp với điều kiện $a>0$ suy ra $a=40$ (chiếc)
Vậy theo dự định mỗi h làm $40$ chiếc khẩu trang.
Gọi số chiếc khẩu trang theo kế hoạch mà mỗi ngày tổ phải may là: `x` (chiếc)
`ĐK: x \in N`*
Trên thực tế tổ đã may mỗi ngày số chiếc là: `x+30` (chiếc)
Thời gian thực tế mà tổ làm xong là: `[2600]/x -1` (ngày)
Vù tổ không những làm xong trược `1` ngày mà còn may thêm được `10` chiếc nên ta có:
`(x+30)(2600/x -1)=2600+10`
`<=>2600-x+78000/x -30=2610`
`<=>x^2+40x-78000=0`
`<=>x^2-260x+300x-78000=0`
`<=>(x-260)(x+300)=0`
`<=>[(x=260(t//m)),(x=-300(ko t//m)):}`
Vậy theo kế hoặc mỗi ngày tổ phải may `260` chiếc khẩu trang
Gọi số khẩu trang mỗi ngày phải may là x
Theo đề, ta có: 300/x-280/(x+10)=3
=>(300x+3000-280x)/(x^2+10x)=3
=>3x^2+30x=20x+3000
=>x=30
2] cao của hình trụ là h (cm)
Đk: h > p
Ta có: Sxq = 2πRh
Stp = 2πRh + 2πR^2
Theo bài ra ta có: Stp = 2Sxq
=> 2πRh + 2πR^2 = 2.2πRh
⇔ 2πR^2 = 2πRh
⇒ h = R = 6 cm
Thể tích V = πR^2.h = π.6^2.6 = 216π (cm3)
Vậy . . .
Gọi x là số giờ làm khẩu trang
Gọi y là số khẩu trang làm trong 1 giờ \(\left(ĐK:x;y>0\right)\)
Theo đề, ta có
\(\hept{\begin{cases}xy=400\\\frac{1}{2}xy+\left(\frac{1}{2}x-1\right)\left(y+100\right)=400\end{cases}}\)
\(\hept{\begin{cases}xy=400\\\frac{1}{2}xy+50x-y-100=200\end{cases}}\)
\(\hept{\begin{cases}xy=400\\50x-y=100\end{cases}}\)
\(\hept{\begin{cases}y=\frac{400}{x}\\50x-\frac{400}{x}=100\end{cases}}\)
\(\hept{\begin{cases}y=\frac{400}{x}\\50x^2-100x-400=0\end{cases}}\)
\(\hept{\begin{cases}y=\frac{400}{x}\\x^2-2x-8=0\end{cases}}\)
\(\hept{\begin{cases}y=\frac{400}{x}\\x=4\left(n\right);x=-2\left(l\right)\end{cases}}\)
\(\hept{\begin{cases}y=100\\x=4\end{cases}}\)
Lời giải:
Giả sử theo kế hoạch mỗi ngày người đó dự định may $a$ khẩu trang.
ĐK: $a\in\mathbb{N}^*$
Thời gian dự định: $\frac{1000}{a}$ (ngày)
Thực tế:
Mỗi ngày người đó may: $a+30$ (khẩu trang)
Số ngày may: $\frac{1000}{a}-1$ (ngày)
Số khẩu trang thực tế:
$(a+30)(\frac{1000}{a}-1)=1000+170$
$\Leftrightarrow a^2+200a-30000=0$
$\Rightarrow a=100$
Vậy mỗi ngày người đó dự định may 100 khẩu trang.