Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thời gian dự định của người đó là:
\(t'=t-\Delta t\)\(\Rightarrow\dfrac{S}{v'}=\dfrac{S}{v}-\Delta t\)
\(\Rightarrow\dfrac{S}{12}=\dfrac{S}{8}-\dfrac{1}{2}\)\(\Rightarrow S=12km\)
\(t=\dfrac{S}{v}=\dfrac{12}{8}=1,5h\)
Câu 1: Giải :
a.Sau khi tăng tốc thêm 3 km/h thì đến nơi sớm hơn dự kiến là 1h ,mà S là như nhau nên theo bài ra ta có:
V1.t = (V1 +3 ).(t -1).
12.t = (12+3 ).(t -1).
12.t = 15.t -15.
15 = 15.t – 12.t.
5 = t.
b. Gọi t’1 là thời gian đi quãng đường \(\frac{s_1}{t'_1}=\frac{S_1}{V_1}\)
Thời gian sửa xe : t = 15 phút = 1/4 h.
Thời gian đi quãng đường còn lại : t’2 = \(\frac{S_1-S_2}{V_2}\)
Theo bài ra ta có : t1 – (t’1 + 1/4 + t’2) = 30 ph = 1/2 h.
T1 – S1/V1 – 1/4 - (S - S1)/V2 = 1/2. (1).
S/V1 – S/V1 – S1.(1/V1- 1/V2) = 1/2 +1/4 = 3/4 (2).
Từ (1) và (2) suy ra: S1.(1/V1 – 1/V2) = 1- 3/4 = 1/4.
Hay S1 = \(\frac{1}{4}.\frac{V_1-V_2}{V_2-V_1}\)\(=\frac{1}{4}.\frac{12.15}{15-12}=15\left(km\right)\)
a.Sau khi tăng tốc thêm 3 km/h thì đến nơi sớm hơn dự kiến là 1h ,mà S là như nhau nên theo bài ra ta có:
V1.t = (V1 +3 ).(t -1).
12.t = (12+3 ).(t -1).
12.t = 15.t -15.
15 = 15.t – 12.t.
5 = t.
b. Gọi t’1 là thời gian đi quãng đường s1: t’1 = S1/V1 ( / : là chia).
Thời gian sửa xe : t = 15 phút = ¼ h.
Thời gian đi quãng đường còn lại : t’2 = (S1-S2)/V2.
Theo bài ra ta có : t1 – (t’1 + ¼ + t’2) = 30 ph = ½ h.
T1 – S1/V1 – ¼ - (S-S1)/V2 = ½. (1).
S/V1 – S/V2 – S1.(1/V1- 1/V2) = ½ +1 /4 =3/4 (2).
Từ (1) và (2) suy ra: S1.(1/V1 – 1/V2) = 1- ¾ = ¼.
Hay S1 = ¼ . (V1- V2)/(V2-V1) = ¼ . (12.15)/(15-12) = 15 km.
Ta có: \(v_{tb}=\dfrac{\dfrac{1}{3}s+\dfrac{2}{3}s}{\dfrac{\dfrac{1}{3}s}{6}+\dfrac{\dfrac{2}{3}s}{12}}=\dfrac{s}{\dfrac{1}{18}s+\dfrac{1}{18}s}=9\left(\dfrac{km}{h}\right)\)
Ta có: \(t_{thuc\cdot te}=t_{du\cdot dinh}-\dfrac{20}{60}\)
\(\Leftrightarrow\dfrac{s}{9}=\dfrac{s}{5}-\dfrac{20}{60}\)
\(\Leftrightarrow s=3,75\left(km\right)\)
\(\Rightarrow t=25\) (phút)
a) Thời gian xe đi đến B với vận tốc 60km/h:
\(t_1=t-\dfrac{1}{6}\)
Thời gian xe đi được đến B với vận tốc 40km/h:
\(t_2=t+\dfrac{1}{4}\)
Quãng đường mà xe đi được với vận tốc 60km/h:
\(s_1=v_1t_1=60\left(t-\dfrac{1}{6}\right)\)
Quãng đường mà xe đi được với vận tốc 40km/h
\(s_2=v_2t_2=40\left(t+\dfrac{1}{4}\right)\)
Vì cả hai quãng đường đều bằng nhau nên ta có phương trình:
\(s_1=s_2\)
\(\Leftrightarrow60\left(t-\dfrac{1}{6}\right)=40\left(t+\dfrac{1}{4}\right)\)
\(\Leftrightarrow60t-10=40t+10\)
\(\Leftrightarrow60t-40t=10+10\)
\(\Leftrightarrow20t=20\)
\(\Leftrightarrow t=\dfrac{20}{20}=1\left(h\right)\)
Vậy thời gian dự định đi là \(1h\)
b) Độ dài của quãng đường AC:
\(s_3=v_1.\dfrac{t}{2}=60.\dfrac{1}{2}\)
Độ dài của quãng đường CB:
\(s_4=v_2.\dfrac{t}{2}=40.\dfrac{1}{2}\)
Vì AB=CB+AC nên ta có phương trình:
\(s=s_3+s_4\)
\(\Leftrightarrow s=60.\dfrac{1}{2}+40.\dfrac{1}{2}\)
\(\Leftrightarrow s=30+20\)
\(\Leftrightarrow s=50km\)
Vậy quãng đường AB dài 50km
10m/s=36km/h
ta có:
do cả hai lần cùng đi một quãng đường nên:
S=S1
\(\Leftrightarrow vt=v_1t_1\)
\(\Leftrightarrow36t=40t_1\)
mà t=t1+0,5
\(\Rightarrow36\left(t_1+0,5\right)=40t_1\)
\(\Rightarrow t_1=4,5h\)
\(\Rightarrow S=180km\)
a,đổi \(18'=\dfrac{3}{10}h\)
a,\(27'=\dfrac{9}{20}h\)
\(=>SAB=\left(t-\dfrac{3}{10}\right).36=\left(t+\dfrac{9}{20}\right).24\)
\(< =>t=1,8h\)
\(=>Sab=\left(1,8-\dfrac{3}{10}\right).36=54km\)
b, đến B đùng tgian dự định là mất 1,8h
\(=>t1=\dfrac{Sab}{v1}=\dfrac{54}{36}=1,5h\)
\(=>t2=\dfrac{Sab}{v2}=\dfrac{54}{24}=2,25h\)
vậy.......
TK:
làm sao tính ra 240 vậy