Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi độ dài quãng đường AB là \(x\) ( km ; x > 0 )
Thì thời gian người đó đi từ A đến B là \(\dfrac{x}{30}\left(giờ\right)\)
Thời gian người đó quay về A là \(\dfrac{x}{20}\left(giờ\right)\)
Vì tổng thời gian lúc đi , lúc về và làm ở B hết 1 giờ là 5 giờ nên ta có phương trình : \(\dfrac{x}{30}+\dfrac{x}{20}+1=5\)
\(\Leftrightarrow\dfrac{x}{30}+\dfrac{x}{20}=4\)
\(\Leftrightarrow2x+3x=240\)
\(5x=240\)\(\Leftrightarrow x=48\left(nhận\right)\)
Vậy quãng đường AB dài \(48km\)
Gọi độ dài quãng đường AB là x
Thời gian đi là x/30(h)
Thời gian về là x/35(h)
Theo đề, ta có x/30-x/35=1/3
hay x=70
Đổi 30 phút = \(\dfrac{1}{2}\) (giờ)
Gọi x (km) là quãng đường từ A đến B (ĐK : x > 0)
Thời gian đi : \(\dfrac{x}{30}\left(h\right)\)
Thời gian về : \(\dfrac{x}{40}\left(h\right)\)
Vì thời gian về ít hơn thời gian đi 30 phút nên ta có pt:
\(\dfrac{x}{40}+\dfrac{x}{30}=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{3x}{120}+\dfrac{4x}{120}=\dfrac{60}{120}\)
\(\Leftrightarrow7x=60\)
\(\Leftrightarrow x=\dfrac{60}{7}\) (N)
Vậy : quãng đường AB dài \(\dfrac{60}{7}\left(km\right)\)
Đổi: 30 phút = \(\dfrac{1}{2}\) (h)
Gọi quãng đường AB là x (km) (x>0)
Vận tốc lúc đi của người đi xe máy là 30 km/h
Thì thời gian lúc đi của người đi xe máy là \(\dfrac{x}{30}\) (h)
Vận tốc lúc về của người đi xe máy là 24 km/h
Thì thời gian lúc về của người đi xe máy là \(\dfrac{x}{24}\) (h)
Theo bài ra ta có pt:
\(\dfrac{x}{24}\) - \(\dfrac{x}{30}\) = \(\dfrac{1}{2}\)
⇔\(\dfrac{5x}{120}\) - \(\dfrac{4x}{120}\) = \(\dfrac{60}{120}\)
⇔ 5x - 4x = 60
⇔ x = 60 (TM)
Vậy quãng đường AB dài 60 km.
Gọi độ dài quãng đường AB là x
Theo đề,ta có phương trình:
\(\dfrac{x}{24}-\dfrac{x}{30}=\dfrac{1}{2}\)
\(\Leftrightarrow x=\dfrac{1}{2}:\left(\dfrac{1}{24}-\dfrac{1}{30}\right)=60\)
Gọi độ dài quãng đường AB là x (km; x > 0)
Vận tốc đi từ B trở về A là: 24 + 6 = 30 (km/h)
Thời gian người đó đi từ A đến B là:
x/24 (h)
Thời gian người đó đi từ B về A là:
x/30 (h)
Đổi 30 phút = 1/2h
vì thời gian về ít hơn thời gian đi 1/2 h nên ta có phương trình:
x/24 - x/30 = 1/2
<=> 30x/720 - 24x/720 = 360/720
<=> 30x - 24x = 360
<=> 6x = 360
<=> x = 360 : 6
<=> x = 60 (TM)
Vậy.....
đổi 2 giờ 15 phút = 2,25 giờ
gọi độ dài quãng đường AB là: x (đơn vị: km, x>0)
=> thời gian xe máy đi là: `x/50` (giờ)
=> thời gian mà xe máy về là: `x/40` (giờ)
thời gian cả đi lẫn về là 2 giờ 15 phút nên ta có pt sau
`x/50+x/40=2,25`
`<=>x(1/50+1/40)=2,25`
`<=>x*9/200=2,25`
`<=>x=50(tm)`
vậy độ dài quãng đường AB là: 50km
Gọi quãng đường AB là x ( x > 0 ) ( km )
Theo đề bài ta có :
Thời gian xe máy lúc đi là \(\dfrac{x}{50}\) ( h )
Thời gian xe máy lúc về là \(\dfrac{x}{40}\left(h\right)\)
Mà biết thời gian cả đi lẫn về là 2 giờ 15 phút ( = 9/4 giờ ) nên ta có phương trình :
\(\dfrac{x}{50}+\dfrac{x}{40}=\dfrac{9}{4}\)
\(\Leftrightarrow4x+5x=450\Leftrightarrow9x=450\Leftrightarrow x=50\)
Vậy Quãng đường AB dài 50 km
Gọi quãng đường AB là x ( x > 0 )
Theo bài ra ta có pt \(\dfrac{x}{24}-\dfrac{x}{30}=\dfrac{1}{2}\Rightarrow x=60\left(tm\right)\)
Gọi quãng đường AB là x ( x > 0 )
Theo bài ra ta có pt \(\dfrac{30}{x}-\dfrac{36}{x+21}=\dfrac{15}{60}=\dfrac{1}{4}\Rightarrow x\approx32,5km\)
đề này bị thiếu dữ liệu thời gian rồi bạn nhé