Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x,y lần lượt là chiều dài, chiều rộng của miếng đất hình chữ nhật (x>0).
Ta có 2(x+y)=160 <=> x+y=80
<=> y=80-x
Kích thước chiều rộng sau khi tăng 10 là x+10
Kích thước chiều dài sau khi giảm 10 là y-10=80-x-10
Vì sau khi chiều rộng tăng 10, chiều dài giảm 10 thì diện tích tăng 200 nên ta có
(x+10)(70-x)=x(80-x)+200
=> 70x+70-x^2 -10x= 80x-x^2 + 200
=> 70x-80x-10x-x^2+x^2=-70+200
=> -20x=130 <=> x=-6,5 (ktm)
vậy không tìm đc x,y
nửa chu vi
160:2=80 cm
Gọi chiều dài là x (m) x>0
Chiều rộng là: 10 - x (m)
Chiều rộng lúc sau là; 10-x-5 = 5-x (m)
Chiều dài lúc sau là:x + 8 (m)
Theo đề ra ta có pt:
x(10−x)+400=(10−x)(x+5)x(10−x)+400=(400−x)(x+5)
⇔10x−x^2+400=.........
................
............. chỗ này tự trình bày nha
Gọi chiều rộng là x, chiều dài là x + 10 => Diện tích HCN ban đầu là : \(x\left(x+10\right)\)
Sau khi giảm chiều dài 2m và tăng chiều rộng 5m thì diện tích HCN là :
\(\left(x+5\right)\left(x+10-2\right)=\left(x+5\right)\left(x+8\right)\)
Diện tích tăng 100m vuông nên :
\(\left(x+5\right)\left(x+8\right)-x\left(x+10\right)=100\\ \Leftrightarrow x^2+13x+40-x^2-10x=100\\ \Leftrightarrow3x=60\\ \Leftrightarrow x=20=>x+10=30=>Chuvilà:\left(30+20\right)\cdot2=100\)
Gọi x(m) là chiều dài của miếng đất(Điều kiện: x>0)
Chiều rộng của miếng đất là: \(\dfrac{1}{3}x\left(m\right)\)
Theo đề, ta có phương trình:
\(\left(\dfrac{1}{3}x+3\right)\left(x-6\right)=\dfrac{1}{3}x\cdot x+18\)
\(\Leftrightarrow\dfrac{1}{3}x^2-2x+3x-18-\dfrac{1}{3}x^2-18=0\)
\(\Leftrightarrow x=36\)(thỏa ĐK)
Vậy: Chiều rộng ban đầu là 12m
Chiều dài ban đầu là 36m
Gọi chiều rộng là `x (m) (x>0)`
`=>` Chiều dài là: `3x (m)`
- Diện tích ban đầu là: `3x^2 (m^2)`
- Diện tích sau khi thay đổi là: `(x+3)(3x-6) (m^2)`
Theo đề, ta có PT: `3x+18=(x+3)(3x-6)`
Giải PT ta được: `[(x=6(TM)),(x=-6 (L)):}`.
Vậy chiều dài là `18m`, chiều rộng là `6m`.
2/Gọi chiều dài,rộng lần lượt là a;b (m;a,b>0)
Từ đề bài,suy ra a + b = 28 m
Suy ra a = 28 - b.
Suy ra diện tích là b(28-b)
Theo đề bài,ta có phương trình: \(\left(b-2\right)\left(28-b+4\right)=b\left(28-b\right)+8\)
\(\Leftrightarrow\left(b-2\right)\left(32-b\right)=-b^2+28b+8\)
\(\Leftrightarrow-b^2+34b-64=-b^2+28b+8\)
\(\Leftrightarrow34b-64=28b+8\)
\(\Leftrightarrow6b-72=0\Leftrightarrow b=12\)
Suy ra chiều dài là: 28 - b = 28 - 12 = 16
Vậy ...
Nửa chu vi HCN: 320:2=160(m)
Gọi độ dài của chiều dài là a(m) (a>0)
=> Độ dài chiều rộng là 160-a(m)
Chiều dài tăng 10m, rộng tăng 20m thì chiều dài mới là (a+10) (m), chiều rộng mới là (180-a) (m)
Diện tích HCN tăng 2700m2, ta được pt:
(180 - a) x (a+10) - (160-a) x a= 2700
<=> 180a - 10a - 160a = 2700 - 1800
<=> 10a = 900
<=>a=90 (TM) (m)
Vậy HCN có chiều dài 90m và chiều rộng là 70m
Bài khó xơi trước để mát dạ đã rồi tính
\(3.\) Điều kiện để phương trình trên có nghĩa \(a\ne0;\) \(b\ne0\) và \(c\ne0\) (theo giả thiết)
Trừ \(1\) vào mỗi phân thức ở \(VT\) và trừ \(3\) cho \(VP\), ta được:
\(\frac{x-a-b-c}{a}+\frac{x-a-b-c}{b}+\frac{x-a-b-c}{c}=0\)
\(\Leftrightarrow\) \(\left(x-a-b-c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=0\) \(\left(\text{*}\right)\)
\(\text{*)}\) Nếu \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ne0\) thì \(\left(\text{*}\right)\) \(\Rightarrow\) \(x-a-b-c=0\), tức \(x=a+b+c\)
\(\text{*)}\) Nếu \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\) thì từ \(\left(\text{*}\right)\), ta suy ra phương trình trên có nghiệm luôn đúng với mọi \(x\)
Vậy, phương trình có nghiệm là \(x=a+b+c\) với trường hợp \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ne0\)
và \(S=R\) nếu \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
\(1.\) Gọi \(x\) \(\left(m\right)\) là chiều rộng ban đầu của miếng đất hình chữ nhật.
nên chiều rộng của miếng đất sau khi tăng lên \(10\) \(\left(m\right)\) là \(x+10\) \(\left(m\right)\)
Vì chu vi của miếng đất là \(160\) \(\left(m\right)\) nên nửa chu vi của miếng đất đó sẽ bằng \(80\) \(\left(m\right)\)
Khi đó, chiều dài ban đầu: \(80-x\) \(\left(m\right)\) nên khi giảm đi \(10\) \(\left(m\right)\) thì chiều dài mới là \(70-x\) \(\left(m\right)\)
Điều kiện: \(x<70\)
Ta có phương trình:
\(\left(70-x\right)\left(x+10\right)-x\left(80-x\right)=200\) \(\Leftrightarrow\) \(x=25\) (thỏa mãn điều kiện)
Do đó, chiều dài ban đầu \(80-25=55\) \(\left(m\right)\)
Vậy, ......
Gọi chiều rộng của khu đất đó là x ( x ∈ N)
chiều dài của khu đất đó là x+10
Diện tích của khu đất đó là x(x+10)
theo bài ra ta có chiều dài tăng thêm 6m, chiều rộng giảm đi 3m thì diện tích mới tăng hơn diện tích cũ là 12m2
.nên ta có phương trình: x + 10 + 6 x − 3 − x x + 10 = 12
⇔ x + 16 x − 3 − x x + 10 = 12
⇔x + 13x − 48 − x − 10x = 12
⇔3x = 48 + 12
⇔3x = 60
⇔x = 20 (tmđk)
vậy chiều rộng của khu đất hình chưa nhật đó là :20 m
chiều dài của khu đất đó hình chữ nhật đó là : 30m
~ học tốt~
Gọi chiều dài, chiều rộng lần lượt là a,b
Theo đề, ta có: a+b=80 và (a-10)(b+10)=ab+200
=>a+b=80và 10a-10b=300
=>a=55 và b=25