K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2019

Chọn đáp án A.

Diện tích của hình chữ nhật là 9.4 = 36 ( m 2 )

Diện tích của mảnh đất hình vuông là 36 ( m 2 ) nên cạnh hình vuông là  36 = 6 (m) (vì độ dài cạnh luôn dương)

20 tháng 4 2020

Gọi chiều dài là a (a khác 0) (m)

chiều rộng là a - 4 (m)

Diện tích là a . (a - 4) (m2)

Mà diện tích mảnh vườn bằng 320 m2 nên ta có pt:

        a . (a - 4) = 320

Giải pt => a = 20

chiều dài là 20 m; chiều rộng là 16 m.

30 tháng 1 2021

Câu 1:

Gọi chiều rộng khu vườn là \(x\) (m) \(\left(x>0\right)\)

\(\Rightarrow\) Chiều dài khu vườn là \(\dfrac{7}{4}x\) (m).

Diện tích khu vườn là 1792 m2 \(\Rightarrow\dfrac{7}{4}x^2=1792\)

\(\Rightarrow x^2=1024\Rightarrow x=32\) (m)

\(\Rightarrow\) Chiều rộng khu vườn là \(32\)m, chiều dài khu vườn là \(\dfrac{7}{4}.32=56\)m

\(\Rightarrow\) Chu vi khu vườn là: \(2.\left(32+56\right)=176\) (m).

(Bạn có thể gọi chiều dài là x, chiều rộng là y nhé.)

Câu 2:

Bạn kiểm tra lại đề bài nhé. Thiếu dữ kiện để có thể lập được hệ phương trình ạ.

Câu 2: 

Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng của mảnh vườn(Điều kiện: a>0; b>0 và \(a\ge b\))

Vì diện tích ban đầu của mảnh vườn là 720m2 nên ta có phương trình: 

ab=720(1)

Vì khi tăng chiều dài 6m và giảm chiều rộng 4m thì diện tích mảnh vườn không đổi nên ta có phương trình:

\(\left(a+6\right)\left(b-4\right)=720\)

\(\Leftrightarrow ab-4a+6b-24=720\)

\(\Leftrightarrow-4a+6b-24=0\)

\(\Leftrightarrow-4a+6b=24\)(2)

Từ (1) và (2) ta có được hệ phương trình:

\(\left\{{}\begin{matrix}ab=720\\-4a+6b=24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\-4\cdot\dfrac{720}{b}+6b=24\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\-\dfrac{2880}{b}+6b=24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\6b^2-24b-2880=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\6\left(b^2-4b-480\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\b^2-4b+4-484=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\\left(b-2\right)^2-484=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\\left(b-2-22\right)\left(b-2+22\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\\left(b-24\right)\left(b+20\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\\left[{}\begin{matrix}b-24=0\\b+20=0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\\left[{}\begin{matrix}b=24\left(nhận\right)\\b=-20\left(loại\right)\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{24}=30\left(nhận\right)\\b=24\end{matrix}\right.\)

Vậy: Chiều dài của mảnh vườn là 30m; Chiều rộng của mảnh vườn là 24m

Gọi chiêu dài, chiều rộng lần lượtlà a,b

Theo đề, ta có: ab=720 và (a+6)(b-4)=ab

=>ab=720 và ab-4a+6b-24=ab

=>-4a+6b=24 và ab=720

=>2a-3b=-12 và ab=720

=>3b=2a+12

=>b=(2a+12)/3

ab=720

=>a*(2a+12)/3=720

=>(2a^2+12a)=2160

=>a=30

=>b=24

 

26 tháng 6 2021

undefined

Gọi chiều dài và chiều rộng của mảnh vườn lần lượt là a(m) và b(m)(Điều kiện: a>0; b>0; \(a\ge b\))

Vì khi giảm chiều dài đi 1m và tăng chiều rộng thêm 1m thì mảnh vườn trở thành hình vuông nên ta có phương trình:

\(\left(a-1\right)=b+1\)

\(\Leftrightarrow a-b=2\)(1)

Vì diện tích của mảnh vườn là 168m2 nên ta có phương trình: ab=168(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}a-b=2\\ab=168\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+2\\\left(b+2\right)\cdot b=168\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=b+2\\b^2+2b-168=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+2\\b^2+2b+1=169\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=b+2\\\left(b+1\right)^2=169\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+2\\b+1=13\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=b+2\\b=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14\\b=12\end{matrix}\right.\)(thỏa ĐK)

Vậy: Chiều dài của mảnh vườn là 14m

Chiều rộng của mảnh vườn là 12m

10 tháng 1 2021

ai giải gúp mình được ko ạ

20 tháng 5 2016

Gọi a (m), b (m) lần lượt là chiều dài và chiều rộng của mảnh vườn hình chữ nhật (a > 6, b > 0)

Diện tích mảnh vườn là: a.b (m2)

Chiều dài hơn chiều rộng 6m nên ta có: a – b = 6

Áp dụng định lý Pitagore, ta có bình phương độ dài đường chéo hình chữ nhật là a2 + b2

Theo đề ra ta có: a2 + b2 = 2,5ab

mà a – b = 6 Û a = b + 6. Thay vào a2 + b2 = 2,5ab ta được :

(b + 6)2 + b2 = 2,5b.(b + 6)

⇔ 2b2 +12b + 36 = 2,5b2 +15b

⇔ 0,5b2 + 3b - 36 = 0 Û b2 + 6b - 72 = 0

Giải ra ta được b = 6 ; a = b + 6 = 12

Diện tích mảnh vườn là S = a.b = 12.6 = 72 (m2)

Vậy mảnh vườn hình chữ nhật có diện tích 72m2.

24 tháng 5 2022

`@` Tham khảo:3

undefined

24 tháng 5 2022

Gọi chiều dài mảnh vườn là: `x (m)`      `ĐK: x > 0`

`=>` Chiều rộng mảnh vườn là: `x-5 (m)`

`=>` Diện tích mảnh vườn là: `x (x-5) (m^2)`

Vì nếu tăng chiều rộng gấp đôi thì diện tích mảnh vườn tăng `300 m^2` nên ta có ptr:

       `2(x-5).x=x(x-5)+300`

`<=>2x^2-10x=x^2-5x+300`

`<=>x^2-5x-300=0`

`<=>x^2-20x+15x-300=0`

`<=>(x-20)(x+15)=0`

`<=>` $\left[\begin{matrix} x=20(t/m)\\ x=-15(ko t/m)\end{matrix}\right.$

Vậy chiều dài mảnh vườn là `20 m`, chiều rộng là `20-5=15 m`