K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi chiều dài và chiều rộng của mảnh vườn lần lượt là a(m) và b(m)(Điều kiện: a>0; b>0; \(a\ge b\))

Vì khi giảm chiều dài đi 1m và tăng chiều rộng thêm 1m thì mảnh vườn trở thành hình vuông nên ta có phương trình:

\(\left(a-1\right)=b+1\)

\(\Leftrightarrow a-b=2\)(1)

Vì diện tích của mảnh vườn là 168m2 nên ta có phương trình: ab=168(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}a-b=2\\ab=168\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+2\\\left(b+2\right)\cdot b=168\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=b+2\\b^2+2b-168=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+2\\b^2+2b+1=169\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=b+2\\\left(b+1\right)^2=169\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+2\\b+1=13\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=b+2\\b=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14\\b=12\end{matrix}\right.\)(thỏa ĐK)

Vậy: Chiều dài của mảnh vườn là 14m

Chiều rộng của mảnh vườn là 12m

21 tháng 11 2021

Gọi cd ban đầu là a(m;a>0)

Cr đầu: \(a-5\left(m\right)\)

Cd sau: \(a-5\left(m\right)\)

Cr sau: \(a-5-4=a-9\left(m\right)\)

Theo đề ta có \(S_{đầu}-S_{sau}=a\left(a-5\right)-\left(a-5\right)\left(a-9\right)=180\)

\(\Leftrightarrow\left(a-5\right)\left(a-a+9\right)=180\\ \Leftrightarrow9\left(a-5\right)=180\\ \Leftrightarrow a-5=20\\ \Leftrightarrow a=25\)

Vậy chu vi ban đầu là \(\left[a+\left(a-5\right)\right]\cdot2=90\left(m\right)\)

Gọi chiêu dài, chiều rộng lần lượtlà a,b

Theo đề, ta có: ab=720 và (a+6)(b-4)=ab

=>ab=720 và ab-4a+6b-24=ab

=>-4a+6b=24 và ab=720

=>2a-3b=-12 và ab=720

=>3b=2a+12

=>b=(2a+12)/3

ab=720

=>a*(2a+12)/3=720

=>(2a^2+12a)=2160

=>a=30

=>b=24

 

20 tháng 3 2017

Gọi a là chiều dài, b là chiều rộng mảnh vườn ( a, b >0 )

Diện tích mảnh vườn: S= a.b = 45

Theo đề bài nếu tăng rộng 2m giảm dài 2m thì mảnh vườn trở thành hình vuông

=> a - 2 = b + 2

<=> a = b + 4

Thay vào công thức tính diện tích ta được:

S = a.b = b(b+4) = 45

<=> b^2 + 4b - 45 = 0

<=> b^2 - 5b + 9b - 45 = 0

<=> (b - 5)(b + 9) = 0

<=> b = 5 hoặc b = -9

Vì b > 0 nên b = 5

Vậy a = b+4 = 5 + 4 = 9

Vậy chiều dài là 9m, rộng là 4m.

Xin lỗi em trình bày lượm thượm ạ

AH
Akai Haruma
Giáo viên
25 tháng 5 2022

Lời giải:

Gọi chiều dài và chiều rộng mảnh vườn lúc đầu lần lượt là $a,b$ (m) 

Theo bài ra ta có:

$a+b=118:2=59(1)$

$(a-5)(b+3)=ab-14$

$\Leftrightarrow 3a-5b=1(2)$

Từ $(1); (2)\Rightarrow a=37; b=22$ (m) 

Diện tích mảnh vườn lúc đầu: $ab=37.22=814$ (m2)

30 tháng 5 2021

Gọi chiều dài,chiều rộng của mảnh vườn lần lượt là a,b(m) \(\left(a>b>0\right)\)

Theo đề: \(\left\{{}\begin{matrix}ab=80\\\left(a-2\right)\left(b+3\right)=80+32=112\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}ab=80\left(1\right)\\ab+3a-2b-6=112\left(2\right)\end{matrix}\right.\)

Thế (1) vào (2): \(\Rightarrow3a-2b=38\Rightarrow3a=2b+38\) 

Ta có: \(3ab=3.80=240\Rightarrow b\left(2b+38\right)=240\Rightarrow2b^2+38b-240=0\)

\(\Rightarrow\left(b-5\right)\left(b+24\right)=0\) mà \(b>0\Rightarrow b=5\Rightarrow a=16\)

 

 

30 tháng 5 2021

Bài giải

Gọi chiều dài là x(m)

Gọi chiều rộng là y(m)

Diện tích mảnh vườn ban đầu là: x.y=80 (m2) (1)

Diện tích mảnh vườn khi thay đổi chiều dài, chiều rộng là: (x-2).(y+3) = 112 (m2) (2)

từ (1)(2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}xy=80\\\left(x-2\right)\left(y+3\right)=112\end{matrix}\right.\)

từ (1) => x= \(\dfrac{80}{y}\)

Thay x= \(\dfrac{80}{y}\) vào (2) => x=16 ; y = 5

Vậy...............................

 

26 tháng 6 2021

undefined

25 tháng 8 2017

bn vô câu hỏi tương tự đi . Cx xó rất nhiều bn hỏi những bài dạng thế này rồi đó

25 tháng 8 2017

Ở chỗ nào, mk ms dùng nên k biết

25 tháng 2 2021

Gọi chiều dài và chiều rộng lầ lượt là x và y (x>y; x,y <59)

Chu vi là 118m nên ta có PT: x+y=59 (1)

Nếu giảm chiều dài đi 5m và tăng chiều rộng thêm 3m thì diện tích giảm đi 14mnên ta có PT:

xy-(x-5)(y+3)=14

⇔xy-xy-3x+5y+15=14

⇔-3x+5y=-1 (2)

Từ (1) và (2) có HPT: \(\left\{{}\begin{matrix}x+y=59\\-3x+5y=-1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=37\\y=22\end{matrix}\right.\)(TM)

Vậy...

Nửa chu vi mảnh vườn HCN: 118:2=59(m)

Gọi a là độ dài chiều dài mảnh vườn. (0<a<59) (m)

=> Độ dài chiều rộng mảnh vườn: 59-a (m)

=> Diện tích thực tế mảnh vườn: (59-a).a (m2) (1)

* Giả sử tăng chiều rộng thêm 3m và giảm chiều dài đi 5m ,diện tích mảnh vườn lúc đó bằng:   (a-5).(59-a+3)=(a-5).(62-a) (m2)

* Vì diện tích giả sử lớn hơn diện tích thực tế 14m2. Nên ta có phương trình: 

(59-a).a=[(a-5).(62-a)] +14

<=> -a2 + 59a +a2 -67a = -296

<=> -8a= -296

<=>a=37 (TM) 

-> Chiều dài mảnh vườn là 37(m), rộng là 59-37=22(m)

Diện tích của mảnh vườn: 37 x 22= 814(m2)