Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Số cách chọn là: \(C^3_{25}=2300\left(cách\right)\)
b: Số cách chọn là: \(C^1_{15}\cdot C^2_{24}=4140\left(cách\right)\)
Chọn 3 cán sự từ 40 học sinh: \(A_{40}^3\) cách
Chọn ban cán sự sao cho có 1 cặp song sinh (nhiều nhất cũng chỉ được 1 cặp thôi): chọn 1 cặp song sinh từ 4 cặp có 4 cách.
Chọn 1 người còn lại từ 38 người có 38 cách
Hoán vị 3 người có 3! cách
\(\Rightarrow4.38.3!\) cách chọn ban cán sự có 1 cặp song sinh
\(\Rightarrow A_{40}^3-4.38.3!\) cách chọn ban cán sự ko có cặp song sinh nào
Ví dụ các cặp song sinh là AB; CD; EF; GH
Giả sử bây giờ chọn cán sự gồm \(ACE\) chẳng hạn rõ ràng vẫn thỏa mãn, mặc dù nó rơi vào trường hợp em đã loại (người ta chỉ cấm 2 người đồng thời có mặt, 1 người thôi thì vẫn được, nhưng như cách chọn của em là cấm cả 2 rồi)
Chọn hai học sinh từ tổ sao cho 2 học sinh cùng giới có 2 công đoạn
\(CD_1:\) Chọn 1 bạn nữ trong 5 bạn nữ \(\Rightarrow\) Có 5 cách chọn
\(CD_2:\) Chọn 1 bạn nam trong 4 bạn nam \(\Rightarrow\) Có 4 cách chọn
Áp dụng quy tắc nhân, ta có : \(5.4=20\) ( cách chọn )
Vậy có 20 cách chọn 2 học sinh từ tổ để 1 bàn có 2 học sinh cùng giới
Lời giải:
Chọn 2 học sinh cùng giới tính nam, có: $C^2_4=6$ cách
Chọn 2 học sinh cùng giới tính nữ, có: $C^2_5=10$ cách
Tổng số cách chọn: $6+10=16$ (cách)
n(omega)=\(C^7_{18}\)
\(n\left(\overline{A}\right)=C^7_{13}+C^7_{11}+C^7_{12}\)
=>\(P\left(A\right)=1-\dfrac{2838}{31824}=\dfrac{4831}{5304}\)
Số cách chọn 7 em bất kì trong ba khối: \(C|^7_{18}=31824\) (cách)
- Số cách chọn 7 em đi trong 1 khối:
\(C^7_7=1\) (cách)
- Số cách chọn 7 em đi trong 2 khối:
+) 7 em trong khối 12 và 11:
\(C^7_{13}-C^7_7=1715\) (cách)
+) 7 em trong khối 12 và 10:
\(C^7_{12}-C^7_7=791\) (cách)
+) 7 em trong khối 11 và 10:
\(C^7_{11}=330\) (cách)
→ Số cách chọn 7 em đi có cả ba khối:
31824 - 1 -1715 - 791 - 330 = 28987(cách)
Có \(C^4_{40}=91390\) cách chọn 4 học sinh từ lớp đó để giữ chức vụ 4 tổ trưởng