Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không gian mẫu: \(C_{14}^5\)
Các cách chọn thỏa mãn gồm có: (1 đỏ 1 vàng 3 xanh), (2 đỏ 1 vàng 2 xanh), (1 đỏ 2 vàng 2 xanh)
Số cách: \(C_5^1C_6^1C_3^3+C_5^2C_6^1C_3^2+C_5^1C_6^2C_3^2\)
Xác suất: \(P=\dfrac{C_5^1C_6^1C_3^3+C_5^2C_6^1C_3^2+C_5^1C_6^2C_3^2}{C_{14}^5}=...\)
Quảng cáo trắng trợn ghê tar :3 Cơ mà có mod Lâm là đủ rồi á THẦY :)
Hộp 1 có 9 viên, hộp 2 có 9 viên, lấy ở mỗi hộp 1 viên.
\(\Rightarrow n(Ω)=(C_{9}^{1})^2=81\)
A: "Hai viên bi chọn được cùng màu".
TH1: cùng màu vàng: \(C_{6}^{1} .C_{5}^{1} =30\)
TH2: cùng màu đỏ: \(C_{3}^{1} .C_{4}^{1}=12\)
\(\Rightarrow n(A)=30+12=42\)
\(\Rightarrow P(A) =\dfrac{n(A)}{n(Ω)}=\dfrac{42}{81}=\dfrac{14}{27}\).
Hộp 1 có 9 viên, hộp 2 có 9 viên, lấy ở mỗi hộp 1 viên.
\(\Rightarrow n(Ω)=(C_{9}^{1})^2=81\)
A: "Hai viên bi chọn được cùng màu".
TH1: cùng màu vàng: \(C_{6}^{1} .C_{5}^{1} =30\)
TH2: cùng màu đỏ: \(C_{3}^{1} .C_{4}^{1}=12\)
\(\Rightarrow n(A)=30+12=42\)
\(\Rightarrow P(A) =\dfrac{n(A)}{n(Ω)}=\dfrac{42}{81}=\dfrac{14}{27}\).
Trong bình có tổng cộng \(5+6+7=18\) viên bi
Không gian mẫu: \(n_{\Omega}=C_{18}^4=3060\)
a. Gọi A là biến cố "trong 4 viên bi được chọn có đúng 1 viên đỏ"
Chọn 1 viên bi đỏ từ 5 viên đỏ: \(C_5^1\) cách
Chọn 3 viên còn lại từ 13 viên (6 trắng 7 vàng): \(C_{13}^3\) cách
\(\Rightarrow n_A=C_5^1.C_{13}^3=1430\)
Xác suất: \(P=\dfrac{1430}{3060}=...\)
b. Gọi B là biến cố "4 viên được chọn có ít nhất 2 viên vàng"
Chọn 4 viên có đúng 1 viên vàng (1 viên vàng và 3 viên từ 2 loại khác): \(C_7^1.C_{11}^3=1155\) cách
Chọn 4 viên không có viên vàng nào: \(C_{11}^4=330\) cách
Xác suất: \(P_B=1-\dfrac{1155+330}{3060}=...\)
Đáp án B
Có các cách chọn sau:
+) 1 bi đỏ, 1 bi vàng, 3 bi xanh, suy ra có C 6 1 C 7 1 C 5 3 = 420 cách.
+) 2 bi đỏ, 2 bi vàng, 1 bi xanh, suy ra có C 6 2 C 7 2 C 5 1 = 1575 cách.
Suy ra xác suất bằng 420 + 1575 C 18 5 = 95 408 .
Không gian mẫu: \(C_{15}^3\)
a/ Để chọn được 3 viên đỏ: \(P=\frac{C_5^3}{C_{15}^3}=\frac{2}{91}\)
b/ Chọn được 3 viên chỉ có 2 màu:
\(P=\frac{C_{15}^3-C_4^1.C_5^1.C_6^1-C_4^3-C_5^3-C_6^3}{C_{15}^3}=\frac{43}{65}\)
c/ Chọn được ít nhất hai màu:
\(P=\frac{C_{15}^3-C_4^3-C_5^3-C_6^3}{C_{15}^3}=\frac{421}{455}\)