Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Phương pháp: Xác suất :
Cách giải:
Số phần tử của không gian mẫu :
Gọi A là biến cố : “4 học sinh được gọi đó cả nam lẫn nữ”
Khi đó :
Xác suất cần tìm:
Đáp án C
Để đạt được 6 điểm thì thí sinh đó phải trả lời đúng 30 câu và trả lời sai 20 câu.
Xác suất trả lời đúng trong 1 câu là 0,25. Xác suất trả lời sai trong 1 câu là 0,75.
Vậy xác suất cần tìm là C 50 30 . 0 , 25 30 . 0 , 75 20 = C 50 20 . 0 , 25 30 . 0 , 75 20 .
Số cách chọn 4 học sinh có cả học sinh xếp loại giỏi, khá, trung bình là:
Số cách chọn 4 học sinh nam có cả học sinh xếp loại giỏi, khá, trung bình là:
Số cách chọn 4 học sinh nữ có cả học sinh xếp loại giỏi, khá, trung bình là:
Số cách chọn 4 học sinh có cả nam, nữ có cả học sinh xếp loại giỏi, khá, trung bình là:
Chọn D
Đáp án C.
Phương pháp:
Xác suất của biến cố A:
P A = n A n Ω .
Cách giải:
Số phần tử của không gian mẫu:
n Ω = C 9 3
A: “Số học sinh nam nhiều hơn số học sinh nữ”
Ta có 2 trường hợp:
+) Chọn ra 2 nam, 1 nữ:
+) Chọn ra 3 nam, 0 nữ.
⇒ n A = C 5 2 C 4 1 + C 5 3
⇒ P A = n A n Ω = C 5 2 C 4 1 + C 5 3 C 9 3 = 25 42
Xác suất để 2 học sinh tên Anh lên bảng là C 4 2 C 40 2 = 1 130
Chọn đáp án A.
Đáp án C
Cách giải:
Gọi ngẫu nhiên hai học sinh lên bảng trong 40 học sinh nên ta có: n Ω = C 40 2 = 780
Gọi biến cố A: “Trong hai bạn được gọi lên bảng, cả hai bạn đều tên là Anh”.
Trong lớp có 4 bạn tên là Anh nên ta có: n A = C 2 2 . C 4 2 = 6
Khi đó ta có xác suất để hai bạn được gọi lên bảng đều tên là Anh là:
P A = n A n Ω = 6 780 = 1 130
Đáp án A
Số cách chọn 4 học sinh bất kì n Ω = C 35 4 = 52360 (cách).
Số cách chọn 4 học sinh chỉ có nam hoặc chỉ có nữ là C 20 4 + C 15 4 = 6210 (cách).
Do đó số cách chọn 4 học sinh có cả nam và nữ là n A = 52360 − 6210 = 46150 (cách).
Vậy xác suất cần tính là P = n A n Ω = 46150 52360 = 4615 5236 .