K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2017

Chọn C.

Gọi H là trọng tâm của tam giác ABC. Khi đó chiều cao của lăng trụ bằng A'H = AH.tan60 °

31 tháng 8 2017

Chọn đáp án D.

Ta có A'A = A'B = A'C nên hình chiếu của A' là tâm đường tròn ngoại tiếp tam giác ABC.

Do tam giác ABC đều nên trọng tâm G là tâm đường tròn ngoại tiếp tam giác ABC.

AG là hình chiếu của A'A lên mặt phẳng (ABC)

Góc giữa A'A  với mặt phẳng (ABC) là:  A ' A G ^

Gọi H là trung điểm BC.

Ta có: 

 

Xét tam giác A'AG vuông tại G:

Diện tích tam giác đều ABC là:

Thể tích khối lăng trụ ABC.A'B'C' là: 

4 tháng 8 2018

Đáp án B

NV
20 tháng 7 2021

Gọi O là tâm đáy \(\Rightarrow SO\perp\left(ABCD\right)\)

Gọi M là trung điểm AB \(\Rightarrow AB\perp OM\Rightarrow AB\perp\left(SOM\right)\)

\(\Rightarrow\widehat{SMO}\) là góc giữa mặt bên  và đáy hay \(\widehat{SMO}=60^0\)

\(SO=OM.tan\widehat{SMO}=\dfrac{a}{2}.tan60^0=\dfrac{a\sqrt{3}}{2}\)

\(V=\dfrac{1}{3}SO.S_{ABCD}=\dfrac{1}{3}.\dfrac{a\sqrt{3}}{2}.a^2=\dfrac{a^3\sqrt{3}}{6}\)

25 tháng 11 2016

Gọi \(G\) là trọng tâm \(\Delta ABC\) \(\Rightarrow AG\perp\left(ABC\right)\)

\(AG=\frac{a\sqrt{3}}{3}\)

Vì G là hình chiếu của A' trên mp(ABC) nên \(\left(\widehat{AA',\left(ABC\right)}\right)=\widehat{A'AG}=60^O\)

\(A'G=AG.tan\left(\widehat{A'AI}\right)=a\)

Vậy \(V=IA'.S_{ABC}=a.\frac{a^2\sqrt{3}}{4}=\frac{a^3\sqrt{3}}{4}\)

7 tháng 5 2018

Đáp án D

Ta có góc giữa cạnh bên AA' với mặt đáy (ABC) là:

góc A ' A H ^  và  tan A ' A H = A ' H A H

Suy ra A ' H = a 2 . tan 30 ° = a 3 6

Do đó V = A ' H . S A B C = a 3 6 . a 2 3 4 = a 3 8  

15 tháng 9 2019

Đáp án C