Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do tính đối xứng nên:
r 1 = r 2 = A 2 = 30 ° i 1 = i 2 = A + D 2 = 60 + 30 2 = 45 °
Ta có: sin i 1 = n sin r 1 ⇒ n = sin i 1 sin r 1 = sin 45 0 sin 30 0 = 2 2. 1 2 = 2
Đáp án cần chọn là: B
Theo bài ra: i 1 = 45 0 , n = 2
sin i 1 = n sin r 1 ⇒ sin 45 0 = 2 sin r 1 ⇒ r 1 = 30 0 ⇒ r 2 = A – r 1 = 30 0
n sin r 2 = sin i 2 ⇒ 2 sin 30 0 = sin i 2 ⇒ i 2 = 45 0
Góc lệch: D = ( i 1 + i 2 ) – A = 30 0
Đáp án cần chọn là: B
Ta có: D = n − 1 . A với góc chiết quang A nhỏ
Thay số: D = 1,5 − 1 .6 = 3 0
Đáp án cần chọn là: A
+ Vì chiếu tia tới vuông góc với mặt AB nên i 1 = 0 ⇒ r 1 = 0
+ Ta có, góc chiết quang A = r 1 + r 2 = 0 + r 2 ⇒ A = r 2
+ Vì tia ló đi là là mặt AC nên i 2 = 90 0
Áp dụng định luật khúc xạ ánh sáng tại mặt AC, ta có:
sin i 2 = n sin r 2
⇔ sin 90 0 = 2 sinr 2
⇒ sinr 2 = 1 2 ⇒ r 2 = 45 0
=> Góc chiết quang của lăng kính A = r 2 = 45 0
Chọn đáp án A.
Chiếu một tia sáng đơn sắc tới lăng kính theo phương vuông góc với mặt phẳng bên AB ⇒ i 1 = 0 0 , r 1 = 0 0 ⇒ r 2 = 45 0 .
Tia sáng khi đi qua khỏi lăng kính nằm sát với mặt bên AC ⇒ i 2 = 90 0
Ta có: sin i 2 = n sin r 2 ⇒ n = 1 , 41.
Áp dụng công thức lăng kính trong trường hợp góc chiết quang và góc tới nhỏ ta có góc lệch của tia ló và tia tới
Đáp án cần chọn là: B
Áp dụng định luật khúc xạ ánh sáng tại điểm tới I của mặt thứ nhất, ta có:
sin i 1 = n sinr 1 ↔ sin 45 = 2 sinr 1 → sinr 1 = 1 2 → r 1 = 30 0
Vì tia ló ra khỏi mặt thứ 2 đi vuông góc nên: i 2 = 0 → r 2 = 0
Ta có: A = r 1 + r 2 = 30 + 0 = 30 0