Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi hình nón đã cho có đỉnh là S và H là tâm đường tròn đáy.
Thiết diện đi qua đỉnh S là tam giác SAC (với A và C thuộc đường tròn đáy)
Gọi M là trung điểm của AC.
Do đó, d( H; (SAC))= HI = 12
Trong tam giác vuông SHM ta có:
Trong tam giác vuông HAM ta có:
AM2 = HA2 – HM2 = 252 – 152 = 400 nên AM = 20 (cm)
Ta có:
Do đó, diện tích thiết diện SAC là:
Trên mặt đáy tâm O ta gọi H là trung điểm của bán kính OP. Qua H kẻ dây cung AB ⊥ OP và nằm trong đáy (O; r). Các đường sinh AD và BC cùng với các dây cung AB và DC (thuộc đáy (O’, r)) xác định cho ta thiết diện cần tìm là một hình chữ nhật. Gọi S là diện tích hình chữ nhật này, ta có: SABCD= AB.AD trong đó AD = 2r còn AB = 2AH. Vì H là trung điểm của OP nên ta tính được AB = r 3 . Vậy S ABCD = 2 r 2 3