Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi chiều dài là x
chiều rộng là y
theo bài ra ta có:
x+y=24
4y+3x=81
=> x= 15; y=9
Gọi chiều dài của khu vườn lúc đầu là: x ( x > 0, y ) ( m )
rộng là: y ( y > 0 ) ( m )
Chu vi khu vườn lúc đầu là: 2( x + y ) = 72 =) x + y = 36 m ( 1 )
Chiều rông khi gấp đôi là: 2y ( m )
Chiều dài khi gấp 3 là: 3x ( m )
Chu vi khu vườn là: 2( 3x + 2y ) = 194 =) 3x + 2y = 97 ( 2 )
Từ ( 1 ) và ( 2 ) ta có hệ phương trình
\(\hept{\begin{cases}x+y=36\\3x+2y=97\end{cases}\Leftrightarrow\hept{\begin{cases}x=25\\y=11\end{cases}}}\)
Vậy...
gọi diện tích của khu vườn ban đầu là x
gọi diện tích của khu vườn sau là y vì chu vi lúc ban đầu là 48m và chu vi khu vườn sau là 162m nay ta có hệ phương trình 162-48=114
gọi chiều dài là x
chiều rộng là y
theo bài ra ta có:
x+y=24
4y+3x=81
=> x= 15; y=9
=> S=135
Nửa chu vi khu vườn là :
112 : 2 = 56 ( m )
Gọi chiều dài khu vườn là a ( m ) ( 0 < a < 56 )
=> chiều rộng khu vườn là : 56 - a ( m )
Chiều dài và chiều rông sau khi tăng và giảm lầm lượt là :
\(\hept{\begin{cases}3a\\4\left(56-a\right)\end{cases}}\)
Theo bài ra , ta có phương trình :
\(2\left[3a+4\left(56-a\right)\right]=382\)
\(\Leftrightarrow3a+224-4a=191\)
\(\Leftrightarrow-a=-33\)
\(\Leftrightarrow a=33\left(TM\right)\)
=> Chiều rộng mảnh vườn là : 56 - 33 = 23 ( m )
Vậy ..............
@iloveyouthcsnhandao : lớp 9 thì nên ưu tiên hệ phương trình ạ xD
Gọi chiều dài khu vườn là x
chiều rộng khu vườn là y ( x,y thuộc N* ; x, y < 112 )
Theo đề bài ta có : 2( x + y ) = 112 (m)
<=> x + y = 56 (m) (1)
Tăng chiều rộng lên 4 lần, chiều dài lên 3 lần
=> Chiều dài mới = 3x ; chiều rộng mới = 4y
Khi đó 2( 3x + 4y ) = 382
<=> 3x + 4y = 191 (m) (2)
Từ (1) và (2) => Ta có hệ phương trình
\(\hept{\begin{cases}x+y=56\\3x+4y=191\end{cases}}\)
Nhân 3 vào từng vế của (1)
\(\Leftrightarrow\hept{\begin{cases}3x+3y=168\left(3\right)\\3x+4y=191\end{cases}}\)
Lấy (3) trừ (2) theo vế
=> -y = -23 <=> y = 23 (tmđk)
Thế y = 23 vào (1)
=> x + 23 = 56 => x = 33 (tmđk)
Vậy chiều dài khu vườn là 33m
chiều rộng khu vườn là 23m
Gọi chiều dài và chiều rộng của khu vườn lần lượt là \(x,y\left(x,y>0\right)\)
Theo bài ra ta có:
\(x+y=\frac{48}{2}=24\)
\(4y+3x=\frac{162}{2}=81\)
\(\Rightarrow x=15;y=9\)
Diện tích của khu vườn ban đầu: \(15.9=135m^2\)
Vậy .........
Gọi chiều dài và chiều rộng mảnh vườn là x và y
x,y>0, x,y<24(m)
2 cạnh chiều rộng của mảnh vườn là 2x(m)
-----------dài--------------------------2y(m)
Chu vi ban đầu là 48(m)
\(2x+2y=48\left(1\right)\)
tăng chiều rộng lên 4 lần và chiều dài lên 3 lần thì chu vi của khu vườn sẽ là 162m
--> \(2\left(4x+3x\right)=162\)
<--> 8x+6y=162(2)
Từ 1 và 2 ta có hpt
\(\left\{{}\begin{matrix}2x+2y=48\\8x+6y=162\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=9\\y=15\end{matrix}\right.\)
Diện tích ban đầu của khu vườn là 9.15=135(m2)
Câu 1:
Gọi chiều rộng khu vườn là \(x\) (m) \(\left(x>0\right)\)
\(\Rightarrow\) Chiều dài khu vườn là \(\dfrac{7}{4}x\) (m).
Diện tích khu vườn là 1792 m2 \(\Rightarrow\dfrac{7}{4}x^2=1792\)
\(\Rightarrow x^2=1024\Rightarrow x=32\) (m)
\(\Rightarrow\) Chiều rộng khu vườn là \(32\)m, chiều dài khu vườn là \(\dfrac{7}{4}.32=56\)m
\(\Rightarrow\) Chu vi khu vườn là: \(2.\left(32+56\right)=176\) (m).
(Bạn có thể gọi chiều dài là x, chiều rộng là y nhé.)
Câu 2:
Bạn kiểm tra lại đề bài nhé. Thiếu dữ kiện để có thể lập được hệ phương trình ạ.
Câu 2:
Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng của mảnh vườn(Điều kiện: a>0; b>0 và \(a\ge b\))
Vì diện tích ban đầu của mảnh vườn là 720m2 nên ta có phương trình:
ab=720(1)
Vì khi tăng chiều dài 6m và giảm chiều rộng 4m thì diện tích mảnh vườn không đổi nên ta có phương trình:
\(\left(a+6\right)\left(b-4\right)=720\)
\(\Leftrightarrow ab-4a+6b-24=720\)
\(\Leftrightarrow-4a+6b-24=0\)
\(\Leftrightarrow-4a+6b=24\)(2)
Từ (1) và (2) ta có được hệ phương trình:
\(\left\{{}\begin{matrix}ab=720\\-4a+6b=24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\-4\cdot\dfrac{720}{b}+6b=24\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\-\dfrac{2880}{b}+6b=24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\6b^2-24b-2880=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\6\left(b^2-4b-480\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\b^2-4b+4-484=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\\left(b-2\right)^2-484=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\\left(b-2-22\right)\left(b-2+22\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\\left(b-24\right)\left(b+20\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\\left[{}\begin{matrix}b-24=0\\b+20=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\\left[{}\begin{matrix}b=24\left(nhận\right)\\b=-20\left(loại\right)\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{24}=30\left(nhận\right)\\b=24\end{matrix}\right.\)
Vậy: Chiều dài của mảnh vườn là 30m; Chiều rộng của mảnh vườn là 24m
Gọi chiều dài, chiều rộng lần lượt là a,b
Theo đề, ta có: a+b=26 và a+8=3(b-2)
=>a+b=26 và a+8-3b+6=0
=>a+b=26 và a-3b=-14
=>a=16; b=10
Gọi chiều dài và chiều rộng của khu vương hình chữ nhật lần lượt là x, y
(24 > x > y > 0; m)
Vì khu vườn hình chữ nhật có chu vi bằng 48 m nên ta có (x + y). 2 = 48
Nếu tăng chiều rộng lên bốn lần và chiều dài lên ba lần thì chu vi của khu vườn sẽ là 162m
Nên ta có phương trình (4y + 3x). 2 = 162
Suy ra hệ phương trình
x + y .2 = 48 4 y + 3 x .2 = 162 ⇔ x + 24 3 x + 4 y = 81 ⇔ x = 15 y = 9 (thỏa mãn)
Vậy diện tích khu vườn ban đầu là 15.9 = 135 m 2
Đáp án: C