K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2017

Số cách chọn  viên bi bất kì trong hộp là:  cách.

Khi chọn bất kỳ thì bao gồm các trường hợp sau

Suy ra số cách chọn thỏa mãn yêu cầu bài toán (có đủ ba màu) là

Chọn B.

2 tháng 4 2018

Đáp án là C

22 tháng 11 2018

27 tháng 3 2018

Không gian mẫu là số cách chọn ngẫu nhiên 5 viên bi từ hộp chứa 18 viên bi.Suy ra số phần tử của không gian mẫu là  Ω = C 18 5 = 8568

Gọi A là biến cố "5 viên bi được chọn có đủ màu và số bi đỏ bằng số bi vàng". Ta có các trường hợp thuận lợi cho biến cố A là:

Chọn A

12 tháng 7 2019

20 tháng 7 2019

Đáp án A

Lấy ngẫu nhiên 3 viên bi trong 12 viên bi có C 12 3 = 220  cách ⇒ n Ω = 220 . 

Gọi X là biến cố “3 bi được chọn có đủ 3 màu”

Lấy 1 viên bi màu đỏ trong 3 bi đỏ có 3 cách.

Lấy 1 viên bi màu xanh trong 4 bi xanh có 4 cách.

Lấy 1 viên bi màu vàng trong 5 bi vàng có 5 cách.

Suy ra số kết quả thuận lợi cho biến cố X là n X = 3 . 4 . 5 = 60 .  Vậy P = n X n Ω = 3 11 .

5 tháng 10 2019

7 tháng 5 2019

Chọn B

Chọn 4 viên bất kì trong 15 viên bi, số cách chọn là n(Ω)=1365 cách

Gọi A là biến cố “4 viên bi lấy ra không đủ cả ba màu”

Trường hợp 1: Chọn 2 đỏ, 1 trắng, 1 vàng có C 6 2 . C 5 1 . C 4 1 = 300  cách

Trường hợp 2: Chọn 1 đỏ, 2 trắng, 1 vàng có C 6 1 . C 5 2 . C 4 1 = 240  cách

Trường hợp 3: Chọn 1 đỏ, 1 trắng, 2 vàng có C 6 1 . C 5 1 . C 4 2 = 180  cách

Theo quy tắc cộng số cách chọn viên bi có đủ 3 màu là 300 + 240 + 180 = 720 cách

Từ đó suy ra số cách chọn 4 viên bi không đủ 3 màu là  n ( A ) = 1365 - 720 = 645

Xác suất cần tìm là  P ( A ) = 645 1365 = 43 91

23 tháng 10 2019

Giả sử trong tình huống xấu nhất ta chọn ngẫu nhiên 13 viên bi mà chỉ có bi màu vàng và màu xanh. Do để được chắc chắn 2 viên bi màu đỏ ta cần chọn thêm 2 viên bi nữa. Vậy cần chọn ít nhất 15 viên bi để chắc chắn được ít nhất 2 viên bi màu đỏ. Chọn B

10 tháng 10 2015

gọi \(\Omega\)" chọn đc 3 viên bi trong 12 viên bi"

\(\left|\Omega\right|=C^3_{12}\)

A"chọn đc 3 viên bi có đủ 3 màu"

\(\left|A\right|=C^1_3.C^1_4.C^1_5\)

\(P\left(A\right)=\frac{\left|A\right|}{\left|\Omega\right|}=\frac{C^1_3.C^1_4.C^1_5}{C^3_{12}}\)