Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều rộng là x
Chiều dài là 2x
Theo đề, ta có: (2x-3)(x+2)=x2
=>2x2+4x-3x-6=x2
=>x2+x-6=0
=>(x+3)(x-2)=0
=>x=-3(loại) hoặc x=2(nhận)
Vậy: Chiều dài là 4m
Lời giải:
Giả sử độ dài chiều rộng HCN là aa (m) (a>2) thì độ dài chiều dài HCN là 2a (m)
Khi giảm mỗi chiều đi 22 (m), độ dài các cạnh hình chữ nhật còn lại a−2a−2 (m) và 2a−2 (m)
Diện tích ban đầu: S=a.2a=2a2 (m vuông)
Diện tích sau khi thay đổi kích thước: S′=(a−2)(2a−2)(m vuông)
Theo đề bài: S=2S′
⇔2a2=2(a−2)(2a−2)
⇔a2=(a−2)(2a−2)=2a2−6a+4
⇔a2−6a+4=0
⇒a=3±√5(m). Mà a>2nên a=3+√5 (m)
Do đó chiều dài HCN đã cho là: 2a=6+2√ (m)
Gọi chiều dài hình chữ nhật ban đầu là \(x\left(m\right),x>0\).
Chiều rộng là: \(\frac{300}{x}\left(m\right)\)
Chiều rộng mới là: \(\frac{300}{x}-3\left(m\right)\)
Chiều dài mới là: \(x+5\left(m\right)\)
Ta có: \(\left(x+5\right)\left(\frac{300}{x}-3\right)=300\)
\(\Leftrightarrow300-3x+\frac{1500}{x}-15=300\)
\(\Leftrightarrow\orbr{\begin{cases}x=20\left(tm\right)\\x=-25\left(l\right)\end{cases}}\)
Vậy chiều dài ban đầu là \(20m\)chiều rộng ban đầu là \(15m\).
Gọi chiều dài khu vườn là a (m), chiều rộng là b (m) (a > 2; b > 2)
=> Diện tích ban đầu của khu vườn là: ab (m2)
Nếu tăng chiều dài thêm 2m, tăng chiều rộng thêm 3m thì diện tích tăng 42m2 nên ta có: (a+2)(b+3) - ab = 42 ⇔ ab + 3a + 2b + 6 - ab = 42
⇔ 3a + 2b = 36 (1)
Nếu giảm mỗi chiều đi 2m thì diện tích giảm 24m2 nên ta có:
ab - (a-2)(b-2) = 24 ⇔ ab - ab + 2a + 2b - 4 = 24 ⇔ 2a + 2b = 28 (2)
Từ (1) và (2) ta có hệ phương trình: \(\left\{{}\begin{matrix}3a+2b=36\\2a+2b=28\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}a=8\\2a+2b=28\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}a=8\\b=6\end{matrix}\right.\) (tm)
Vậy khu vườn ban đầu có chiều dài 8m, chiều rộng 6m
Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng của khu vườn(Điều kiện: a>0; b>0; \(a\ge b\))
Diện tích ban đầu của khu vườn là:
\(ab\left(m^2\right)\)
Vì khi tăng chiều dài thêm 2m và chiều rộng thêm 3m thì diện tích sẽ tăng 42m2 nên ta có phương trình:
\(\left(a+2\right)\left(b+3\right)=ab+42\)
\(\Leftrightarrow ab+3a+2b+6-ab-42=0\)
\(\Leftrightarrow3a+2b=36\)(1)
Vì khi giảm chiều dài 2m và giảm chiều rộng 2m thì diện tích giảm 24m2 nên ta có phương trình:
\(\left(a-2\right)\left(b-2\right)=ab-24\)
\(\Leftrightarrow ab-2a-2b+4-ab+24=0\)
\(\Leftrightarrow-2a-2b=-28\)
\(\Leftrightarrow a+b=14\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}3a+2b=36\\a+b=14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+2b=36\\3a+3b=42\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-b=-6\\a+b=14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=6\\a=14-b=14-6=8\end{matrix}\right.\)(thỏa ĐK)
Vậy: Chiều dài ban đầu của khu vườn là 8m
Chiều rộng ban đầu của khu vườn là 6m
Lời giải:
Gọi chiều dài và chiều rộng mảnh vườn lúc đầu lần lượt là $a,b$ (m)
Theo bài ra ta có:
$a+b=118:2=59(1)$
$(a-5)(b+3)=ab-14$
$\Leftrightarrow 3a-5b=1(2)$
Từ $(1); (2)\Rightarrow a=37; b=22$ (m)
Diện tích mảnh vườn lúc đầu: $ab=37.22=814$ (m2)
Gọi chiều rộng là x
Chiều dài là x+10
Theo đề, ta có: (x+11)(x-4)=x(x+10)-80
\(\Leftrightarrow x^2-4x+11x-44=x^2+10x-80\)
=>10x-80=7x-44
=>3x=36
hay x=12
Chiều dài là 12+10=22(m)
Diện tích là 12x22=264(m2)