Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương pháp giải
Sử dụng: Trong tam giác vuông, cạnh góc vuông bằng cạnh góc vuông kia nhân tan góc đối.
Đặt tên như hình vẽ thì chiều cao của tháp là đoạn BD
Xét tam giác ABC vuông tại A có AC=DE=150m;C^=200 nên
AB=150.tan20∘≈54,596(m)
Chiều cao của cột ăng-ten là:
BD=AB+AD
Phần còn lại của cột ăng-ten là cạnh đối của góc 20 ° , khoảng cách từ chỗ em đứng đến chân cột ăng-ten là cạnh kề với góc 20 °
Phần còn lại của cột ăng-ten cao là:
150.tg 20 ° ≈ 54,596 (m)
Chiều cao của cột ăng-ten là:
54,596 + 1,5 = 56,096 (m)
- Xét ΔABC vuông tại A, áp dụng hệ thức c - góc ta có:
AC = \(\frac{AB}{tanC}\) = \(\frac{150}{tan20^0}\) =412,12 m
Vậy chiều cao của tháp là 412, 12 m
Ai giải bài này giùm đi