K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2022

y'yBDACMFE

a) b) Đưa các đẳng thức về dạng đẳng thức của các tỉ số và áp dụng để chứng minh các cặp tam giác đồng dạng.

c) Từ hai phần a và b, ta suy ra \widehat{CAM}=\widehat{MFE}

16 tháng 1 2022

a) b) Đưa các đẳng thức về dạng đẳng thức của các tỉ số và áp dụng để chứng minh các cặp tam giác đồng dạng.

c) Từ hai phần a và b, ta suy ra \widehat{CAM}=\widehat{MFE}.

Bài 4 Cho nửa đường tròn đường kính AB và dây AC. Từ một điểm D trên AC, vẽ DE vuông góc với AB. Hai đường thẳng DE và BC cắt nhau tại F. Chứng minh rằng:a) Tứ giác BCDE nội tiếp.b)góc AFE= ACE.Bài 5. Cho nứa đường tròn đường kính AB. Lấy hai điểm C và D trên nửa đường tròn sao cho cung AC= cung CD= cung DB. Các tiếp tuyến vẽ từ B và C của nửa đường tròn cắt nhau tại I.Hai tia AC và BD cắt...
Đọc tiếp

Bài 4 Cho nửa đường tròn đường kính AB và dây AC. Từ một điểm D trên AC, vẽ DE vuông góc với AB. Hai đường thẳng DE và BC cắt nhau tại F. Chứng minh rằng:

a) Tứ giác BCDE nội tiếp.

b)góc AFE= ACE.

Bài 5. Cho nứa đường tròn đường kính AB. Lấy hai điểm C và D trên nửa đường tròn sao cho cung AC= cung CD= cung DB. Các tiếp tuyến vẽ từ B và C của nửa đường tròn cắt nhau tại I.Hai tia AC và BD cắt nhau tại K. Chứng minh rằng:

a) Các tam giác KAB và IBC là những tam giác đêu.

b) Tứ giác KIBC nội tiếp.

Bài 6. Cho nửa đường tròn (0) đường kính AB và tia tiếp tuyến Bx của nửa đường tròn. Trên tia Bx lấy hai điểm C và D (C nằm giữa B và D). Các tia AC và BD lần lượt cắt đường tròn tại E và F. Hai dây AE và BF cắt nhau tại M. Hai tia AF và BE cắt nhau tại N. Chứng minh rằng:

a) Tứ giác FNEM nội tiêp.

b) Tứ giác CDFE nội tiếp.

Bài 7. Cho tam giác ABC. Hai đường cao BE và CF cắt nhau tại H. Gọi D là điểm đối xứng của H qua trung điểm M của BC.

a) Chứng minh rằng tứ giác ABDC nội tiếp được đường tròn. Xác định tâm 0 của đường tròn đó

b) Đường thẳng DH cắt đường tròn (0) tại điểm thứ hai là I. Chứng minh rằng năm điểm A, I, F, H, E cùng nằm trên một đường tròn

Các bạn giải giúp mình các bài này nhé, mình cảm ơn nhiều lắm

0
31 tháng 3 2020

vgfykgkuy

31 tháng 3 2020

mk bt nhưng mk ko bt

11 tháng 3 2022

a) Xét (O): 

AB là tiếp tuyến; B là tiếp điểm (gt). \(\Rightarrow\widehat{ABO}=90^o.\)

AC là tiếp tuyến; C là tiếp điểm (gt). \(\Rightarrow\widehat{ACO}=90^o.\)

\(\Rightarrow\) 4 điểm A, B, O, C cùng thuộc một đường tròn đường kính AO.

b) Xét (O):

\(\widehat{ACD}=\widehat{AEC}\) (Góc tạo bởi tia tiếp tuyến và dây; góc nội tiếp cùng chắn \(\stackrel\frown{CD}\)).

Xét \(\Delta ACD\) và \(\Delta AEC:\)

\(\widehat{ACD}=\widehat{AEC}\left(cmt\right).\)

\(\widehat{CAD}chung.\)

\(\Rightarrow\Delta ACD=\Delta AEC\left(g-g\right).\)

\(\Rightarrow\dfrac{AC}{AE}=\dfrac{AD}{AC}.\\ \Rightarrow AC^2=AD.AE.\)

16 tháng 1 2017

Ai trả lời câu này giúp m đc ko ạ

1 tháng 3 2018

a) Tứ giác CENB có \(\widehat{CEN}=\widehat{CBN}=90^o\) nên bốn điểm B, C, E, N cùng thuộc đường tròn đường kính CN.

b) Ta có ngay \(\Delta MAC\sim\Delta CBN\left(g-g\right)\Rightarrow\frac{AM}{BC}=\frac{AC}{NB}\Rightarrow AM.BN=AC.BC\)

c) Ta có \(S_{AMNB}=\frac{\left(AM+BN\right).AB}{2}\)

Do AB, AM không đổi nên SAMNB lớn nhất khi và chỉ khi BN lớn nhất.

\(BN=\frac{AC.CB}{AM}\le\frac{\frac{\left(AC+CB\right)^2}{4}}{AM}=\frac{AB^2}{4AM}\)

Dấu bằng xảy ra khi \(AC=CB\) hay C là trung điểm AB.

DA*DP=DB*DC

=>DA/DC=DB/DP

=>ΔDAB đồng dạng với ΔDCP

=>góc BAD=góc PCD

=>ABPC nội tiếp