Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi các tấm vải tứ tự là x,y,z
khi bán đi mỗi tấm còn lại ta có dãy số bằng nhau
x/2=y/3=z/4 => x/2+y/3+z/4 = 108/9 = 12
x= 12.2=24m
y=12.3=36m
z=12.4=48m
- Gọi chiều dài ba tấm vải lần lượt là a;b;c(m; a;b;c\(\in\) N*)
- Theo đề bài ta có:
+ Sau khi bán \(\frac{1}{2}\)tấm thứ nhất thì tấm thứ nhất còn lại: \(a-a.\frac{1}{2}=a.\frac{1}{2}=\frac{a}{2}\)(1)
+ Sau khi bán \(\frac{2}{3}\)tấm thứ hai thì tấm thứ hai còn lại: \(b-b.\frac{2}{3}=b.\frac{1}{3}=\frac{b}{3}\)(2)
+ Sau khi bán \(\frac{3}{4}\)tấm vải thứ ba thì tấm thứ ba còn lại: \(c-c.\frac{3}{4}=c.\frac{1}{4}=\frac{c}{4}\)(3)
Mà lúc đó số mét vải còn lại ở ba tấm bằng nhau \(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)
+ Ba tấm vải dài tổng cộng 108m \(\Rightarrow\) \(a+b+c=108\left(m\right)\)
- Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{108}{9}=12\)
\(\Rightarrow a=12.2=24\left(m\right)\) ; \(b=12.3=36\left(m\right)\); \(c=12.4=48\left(m\right)\)
Vậy
Gọi chiều dài 3 tấm vải lần lượt là a;b;c (m) (a;b;c > 0)
Vì tổng chiều dài 3 tấm vải là 108 m nên a + b + c = 108
Do sau khi bán \(\frac{1}{2}\) tấm thứ nhất, \(\frac{2}{3}\) tấm thứ hai và \(\frac{3}{4}\) tấm thứ 3 thì số m vải còn lại ở 3 tấm bằng nhau nên
\(a-\frac{1}{2}a=b-\frac{2}{3}b=c-\frac{3}{4}c\)
\(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{b}{4}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{108}{9}=12\)
\(\Rightarrow\begin{cases}a=12.2=24\\b=12.3=36\\c=12.4=48\end{cases}\)
Vậy tấm vải thứ nhất dài 24 m, tấm vải thứ 2 dài 36 m, tấm vải thứ 3 dài 48 m
Gọi chiều dài 3 tấm vải lần lượt là \(x,y,z\left(x,y,z>0\right)\)
Mà tổng độ dài ba tấm vải là 108, nên ta có:
\(x+y+z=108\)
Sau khi họ bán đi \(\dfrac{1}{2}\) tấm vải thứ nhất, \(\dfrac{2}{3}\) tấm vải thứ hai và \(\dfrac{3}{4}\) tấm vải thứ ba thì số vải còn lại ở ba tấm bằng nhau nên tấm vải thứ nhất còn \(\dfrac{1}{2}\), tấm vải thứ hai còn \(\dfrac{1}{3}\) và tấm vải thứ ba còn \(\dfrac{1}{4}\) :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
\(\Leftrightarrow\dfrac{x+y+z}{2+3+4}=\dfrac{108}{9}=12\)
Do đó:
\(x=12.2=24\)
\(y=12.3=36\)
\(z=12.4=48\)
Vậy độ dài tấm vải thứ nhất là 24 m, độ dài tấm vải thứ hai là 36 m, độ dài tấm vải thứ ba là 48 m.
Số vải tấm thứ nhất còn lại
1-2/3=1/3 tấm thứ nhất
Số vải tấm thứ hai còn lại
1-3/4=1/4 tấm thứ hai
Số vải tấm thứ nhất còn lại
1-4/5=1/5 tấm thứ 3
Theo đề bài 1/3 tấm thứ nhất = 1/4 tấm thứ hai = 1/5 tấm thứ 3
=> tấm thứ nhất : Tấm thứ hai : tấm thứ ba = 3:4:5
Chiều dài tấm 1 = 132:(3+4+5)x3=33 m
Chiều dài tấm 2 = 132:(3+4+5)x4=44 m
Chiều dài tấm 3 = 132:(3+4+5)x5=55 m
Gọi chiều dài tấm vải thứ nhất, thứ hai, thứ ba lần lượt là a;b;c (m) (a,b,c>0)
Theo đề ra ta có: \(a-\frac{2}{3}a=b-\frac{3}{4}b=c-\frac{4}{5}c\)
\(\Rightarrow\frac{1}{3}a=\frac{1}{4}b=\frac{1}{5}c\)
\(\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
Vì 3 tấm dài tổng cộng 132 m \(\Rightarrow a+b+c=132\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{132}{12}=11\)
\(\Rightarrow\hept{\begin{cases}a=11\cdot3=33\\b=11\cdot4=44\\c=11\cdot5=55\end{cases}}\)
Vậy: tấm thứ nhất dài 33m; tấm thứ hai dài 44m; tấm thứ ba dài 55m.
Với một bài toán lớp 7 bạn nên làm tính chất dãy tỉ số bằng nhau nhé Minh! ^_^