Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vận tốc thuyền và vận tốc dòng nước lần lượt là x ; y ( x ; y > 0 )
Theo bài ra ta có hpt \(\left\{{}\begin{matrix}\dfrac{2}{x-y}=\dfrac{4}{x+y}\\\dfrac{40}{x-y}+\dfrac{40}{x+y}=\dfrac{9}{2}\end{matrix}\right.\)
Đặt 1/(x-y) = t ; 1/(x+y) = u
\(\left\{{}\begin{matrix}2t-4u=0\\40t+40u=\dfrac{9}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}t=\dfrac{3}{40}\\u=\dfrac{3}{80}\end{matrix}\right.\)
Theo cách đặt \(\left\{{}\begin{matrix}x-y=\dfrac{40}{3}\\x+y=\dfrac{80}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=20\\y=\dfrac{20}{3}\end{matrix}\right.\)(tm)
Vậy ...
gọi vận tốc thực của thuyền là x km/h=>vận tốc khi xuôi dòng là x+5=>thời gian lúc đi xuôi là 50/(x+5)
khi ngược dòng là x-5=>thời gian lúc đi ngược là 50/(x-5)
đổi 4h10=25/6h ta có \(\frac{50}{x+5}+\frac{50}{x-5}=\frac{25}{6}\) giải cái này ra đc x=25
Mình nghĩ cho dữ kiện kia hơi thừa, vì vận tốc thuyền = vận tốc xuôi - vận tốc dòng nước nên có duy ra luôn vận tốc thuyền là : 50 - 2 = 48 (km/h)
gọi x(km/h) là vận tốc thực của thuyền (ĐK x>4)
Vận tốc của thuyền khi xuôi dòng là X+4(km/h)
Thời gian của thuyền khi xuôi dòng là 48/(x+4) giờ
vận tốc khi xuôi dòng là x-4 (km/h)
Thời gian khi ngược dòng 48/(x-4) giờ
vì thời gian đi và về là 5 giờ nên ta có phương trình
48/(x+4)+48/(x-4)=5
bạn giải đi
Đặt vận tốc của tàu thủy khi nước yên lặng là a (đơn vị: km/h; a\(\in\)R; a\(\ge\)0)
Ở lần thứ nhất, do tàu thủy xuôi dòng nên vận tốc của tàu thủy lúc đó là: a+4 (4 là vận tốc dòng nước)
Suy ra thời gian để tàu xuôi dòng hết khúc sông đó là: \(\frac{48}{a+4}\)(h) (1)
Ở lần thứ 2, tàu ngược dòng sông nên có vân tốc là: a - 4
Suy ra thời gian để tàu ngược dòng hết khúc sông là: \(\frac{48}{a-4}\)(h) (2)
Từ (1) và (2) => \(\frac{48}{a+4}+\frac{48}{a-4}=5\)(h) (Vì thời gian cả ngược lẫn xuôi là 5h)
\(\Leftrightarrow\frac{48\left(a-4\right)}{\left(a+4\right)\left(a-4\right)}+\frac{48\left(a+4\right)}{\left(a+4\right)\left(a-4\right)}=5\)
\(\Leftrightarrow\frac{96a}{a^2-16}=5\Leftrightarrow96a=5a^2-80\)
\(\Leftrightarrow5a^2-96a-80=0\)\(\Leftrightarrow5a^2+4a-100a-80=0\)
\(\Leftrightarrow a\left(5a+4\right)-20\left(5a+4\right)=0\)
\(\Leftrightarrow\left(5a+4\right)\left(a-20\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}5a+4=0\\a-20=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}a=-\frac{4}{5}\\a=20\end{cases}}\)
Ta thấy \(a=-\frac{4}{5}< 0\)không thỏa mãn điều kiện của ẩn a đã đặt nên chỉ có kết quả là: \(a=20\)
Vậy vận tốc của tàu thủy khi nước lặng là 20 km/h.
gọi vận tốc thực là x(x>4)km/h
vận tốc khi xuôi dòng là x+4 km/h
vận tốc khi ngược dòng là x-4 km/h
thời gian ca nô đi xuôi dòng là \(\dfrac{80}{x+4} \)h
thời gian ca nô đi ngược dòng là \(\dfrac{80}{x-4} \)h
vì tổng thời gian ca nô đi xuôi dòng và ngược dòng là 8h20p=\(\dfrac{25}{3} \)h
nên ta có pt \(\dfrac{80}{x+4} \)+\(\dfrac{80}{x-4} \)=\(\dfrac{25}{3} \)
giải pt x=-0.8 Ktm điều kiện
x= 20 TM
vậy vận tốc thực của ca nô là 20km/h
Gọi vận tốc thực của ca nô là x km/h < x>7 >
=> Vận tốc xuôi dòng của CA nô là x+7 km/h
=> Tg CA nô xuôi dòng trên đoạn đường 11 km là \(\dfrac{11}{x+7}\) h
=> Vận tốc của thuyền máy khi đi ngược dòng là x-7 km/h
=> Tg CA nô ngược dòng trên đoạn đường 15 km là \(\dfrac{15}{x-7}\) h
Đổi 55 phút = \(\dfrac{11}{12}\) h
Theo bài ra ta có pt
\(\dfrac{15}{x-7}\) - \(\dfrac{11}{x+7}\) = \(\dfrac{11}{12}\)
Giả pt ra ta dc x= 18 km/h < làm tròn >