Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Phương pháp: Sử dụng đường tròn lượng giác
Cách giải: Ta có chu kỳ dao động của vật là
Áp dụng vòng tròn lượng giác trong dao động điều hòa ta có
Từ vòng tròn lượng giác ta có để đi từ vị trí x = -6cm đến vị trí x = 6cm vật sẽ quét được trên vòng tròn lượng giác 1 góc
Vì trong một chu kỳ vật quét được 1 góc 2π do đó ta có:
Pha ban đầu bằng 0 --> Vật xuất phát từ biên độ dương.
Như vậy, lần đầu tiên (lẻ) vật qua li độ 5cm ứng với véc tơ quay đến M, và lần thứ 2 (chẵn) ứng với véc tơ quay đến N.
Cứ như vậy, thời gian để vật qua li độ 5cm lần 2015 đến 2016 ứng với véc tơ quay từ M đến N.
Góc quay 2400
Thời gian: \(t=\dfrac{240}{360}T=\dfrac{2}{3}.0,2=\dfrac{2}{15}s\)
Lực đàn hồi cực đại: \(F_{dhmax}=k(\Delta\ell_0+A)=9\) (1)
Lực đàn hồi ở VTCB là: \(F_{dhcb}=k.\Delta\ell_0=3\) (2)
Lấy (1) trừ (2) vế với vế ta được: \(k.A=6\) (3)
Lấy (2) chia (3) vế với vế ta được: \(\dfrac{\Delta\ell_0}{A}=\dfrac{1}{2}\)
Lực đàn hồi cực tiểu khi \(x=-\Delta\ell_0\)
Lực đàn hồi cực đại khi \(x=A\)
Biểu diễn dao động bằng véc tơ quay:
Thời gian tương ứng với véc tơ quay từ M đến N, góc quay: 1200
Thời gian: \(t=\dfrac{120}{360}T=\dfrac{T}{3}\)
Lời giải:
Vì tại thời điểm ban đầu vật đang qua VTCB theo chiều âm nên phương trình dao động của vật \(x=A\cos\left(\omega t+\frac{\pi}{2}\right)\) (cm)
Từ điều kiện đề bài kết hợp với công thức \(A^2=x^2+\left(\frac{v}{\omega}\right)^2\) nên \(\omega=2\pi\Rightarrow A=5\left(cm\right)\)
Do đó phương trình là \(x=5\cos\left(2\pi t+\frac{\pi}{2}\right)\left(cm\right)\)
bạn tìm được T = 0,4 (s)
Vật cách vị trí thấp nhất 2 cm tức là cách biên A 2cm (chọn chiều dương hướng xuống) => x = 8 - 2 = 6 (cm)
v=w. = = 83,11 (cm/s)
Phương pháp: Áp dụng hệ thức độc lập trong dao động cơ
ta có A = 4cm; ω = 40 r a d / s ; T = 0 , 1 π s
Vận tốc trung bình của chất điểm trong mỗi chu kỳ là
Đáp án D
Tốc độ trung bình = quãng đường / thời gian.
Quãng đường: \(S=A+\dfrac{A}{2}=\dfrac{3A}{2}\)
Biểu diễn dao động bằng véc tơ quay, véc tơ quay được góc là: 90 + 30 = 1200.
Thời gian tương ứng: \(t=\dfrac{120}{360}T=\dfrac{T}{3}\)
Tốc độ trung bình: \(v_{TB}=\dfrac{S}{t}=\dfrac{9A}{2T}=\dfrac{9A.\omega}{2.2\pi}=\dfrac{9v_{max}}{4\pi}\)