Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không gian mẫu: \(C_9^1.C_8^1=72\)
a. Lấy được 2 bi trắng khi bi lấy ra từ cả 2 hộp đều trắng
Số biến cố thuận lợi: \(C_5^1.C_6^1=30\)
Xác suất: \(P=\dfrac{30}{72}=...\)
b. Số cách lấy cả 2 có ít nhất 1 vàng: \(72-30=42\)
Xác suất: \(P=\dfrac{42}{72}=...\)
Hộp 1 có 9 viên, hộp 2 có 9 viên, lấy ở mỗi hộp 1 viên.
\(\Rightarrow n(Ω)=(C_{9}^{1})^2=81\)
A: "Hai viên bi chọn được cùng màu".
TH1: cùng màu vàng: \(C_{6}^{1} .C_{5}^{1} =30\)
TH2: cùng màu đỏ: \(C_{3}^{1} .C_{4}^{1}=12\)
\(\Rightarrow n(A)=30+12=42\)
\(\Rightarrow P(A) =\dfrac{n(A)}{n(Ω)}=\dfrac{42}{81}=\dfrac{14}{27}\).
Hộp 1 có 9 viên, hộp 2 có 9 viên, lấy ở mỗi hộp 1 viên.
\(\Rightarrow n(Ω)=(C_{9}^{1})^2=81\)
A: "Hai viên bi chọn được cùng màu".
TH1: cùng màu vàng: \(C_{6}^{1} .C_{5}^{1} =30\)
TH2: cùng màu đỏ: \(C_{3}^{1} .C_{4}^{1}=12\)
\(\Rightarrow n(A)=30+12=42\)
\(\Rightarrow P(A) =\dfrac{n(A)}{n(Ω)}=\dfrac{42}{81}=\dfrac{14}{27}\).
Đáp án D
+ Trường hợp 1: chọn 4 bi đỏ hoặc trắng có cách
+ Trường hợp 2: chọn 4 bi đỏ và vàng hoặc 4 bi vàng có cách
+ Trường hợp 3: chọn 3 bi trắng và vàng có cách
Vậy có cách
SỐ cách chọn ngẫu nhiên 4 viên bi là:
\(C^4_{12}=495\left(cách\right)\)
\(n\left(\Omega\right)=C^4_{15}\)
\(n\left(A\right)=C^4_4+C^1_6\cdot C^1_5\cdot C^2_4+C^2_6\cdot C^2_5=331\)
=>p(A)=331/1365
kết quả ni đúng ko s