K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2020

a) xét tam giác ABF zà tam giác ACB có

BAC chung 

ABF= ACB (gt)

=> tam giác ABF= tam giác ACB (g.g)

\(=>\frac{AF}{AB}=\frac{AB}{AC}=>\frac{AF}{AB}=\frac{4}{8}=>AF=2\)

ta có AF+FC=AC

=> 2+FC=8

=>FC=6

b) D là trung điểm của BC ( AD là trung tuyến của tam giác ABC 

=>\(DC=\frac{1}{2}BC\)

kẻ đường cao AH

ta có \(\frac{S_{ABC}}{S_{ADC}}=\frac{\frac{1}{2}.AH.AB}{\frac{1}{2}.AH.DC}=\frac{AB}{DC}=\frac{AB}{\frac{1}{2}AB}=2\)

\(=>S_{ABC}=2S_{ADC}\)

c) tam giác CKA có OF//KA nên theo đ/l ta lét có

\(\frac{FC}{FA}=\frac{OC}{OK}\left(1\right)\)

tam giác OCI có KA//CI nên theo hệ quả đ/l ta lét ta có

\(\frac{OC}{OK}=\frac{CI}{KA}\left(2\right)\)

từ 1 zà 2 \(=>\frac{FC}{FA}=\frac{CI}{KA}\)

8 tháng 4 2020

lại câu c nhé

c) ta có Cx//BF nên theo đ.l ta lét ta đc

\(\frac{FC}{FA}=\frac{OI}{OA}\)

Cx//AY( hệ quả ta lét )=>\(\frac{OI}{OA}=\frac{CJ}{JA}\Leftrightarrow\frac{FC}{FA}=\frac{CI}{JA}\)

tương tự ta có 

\(\frac{DB}{DC}=\frac{BO}{CI}\left(hệ\right)quả\)

\(\frac{FC}{FA}=\frac{CI}{JA}\left(cmt\right)\)

mặt khác Ay//FB ta có

\(\frac{EA}{EB}=\frac{JA}{BO}=>\frac{DB}{DC}.\frac{FC}{FA}.\frac{EA}{EB}=\frac{BO}{CI}.\frac{CI}{JA}.\frac{JA}{BO}=1\)(dpcm)

Mong mn giúp mk làm phần in đậm , mk cần gấp ạ. Xin cảm ơn!!!Bài 1 Cho tam giác ABC, trung tuyến AD, biết AB = 4cm, AC = 8cm. Qua B dựng đường thắng cắt AC tại F sao cho góc ABF bằng góc ACB. a) Chứng tỏ tam giác ABF và tam giác ACB đồng dạng. Tính độ dài đoạn CFb) Chứng tỏ diện tích tam giác ABC bằng hai lần diện tích tam giác ADCc) Gọi 0 là giao điểm của BF và AD, CO cắt AB tại E. Từ A và C lần lượt...
Đọc tiếp

Mong mn giúp mk làm phần in đậm , mk cần gấp ạ. Xin cảm ơn!!!

Bài 1 Cho tam giác ABC, trung tuyến AD, biết AB = 4cm, AC = 8cm. Qua B dựng đường thắng cắt AC tại F sao cho góc ABF bằng góc ACB. 

a) Chứng tỏ tam giác ABF và tam giác ACB đồng dạng. Tính độ dài đoạn CF

b) Chứng tỏ diện tích tam giác ABC bằng hai lần diện tích tam giác ADC

c) Gọi 0 là giao điểm của BF và AD, CO cắt AB tại E. Từ A và C lần lượt dựng các đường | thẳng song song với BF cắt CO tại J và cắt AD tại I.

 + Chứng tỏ FC/FA  = CI/JA

 + Chứng tỏ DB/DC  = FC/FA = EA/EB=1

 Bài 2: Cho hình chữ nhật ABCD, kẻ AH vuông góc với đường chéo BD

 a) Chứng minh tam giác AHD và tam giác DCB đồng dạng và BC.BC = DH.DB

 b) Gọi S là trung điểm của BH, R là trung điểm của AH. 

Chứng minh SH.BD = SR.DC 

c) Gọi T là trung điểm của DC. Chứng minh tứ giác DRST là hình bình hành

d) Tính góc AST

 

 

2
8 tháng 4 2020

câu 2d

 Ta có SR // AB mà AB ⊥ AD (gt) ⇒ SR ⊥ AD, lại có AH ⊥ SD (gt)

⇒ R là trực tâm của ΔSAD ⇒ DR là đường cao thứ ba nên DR ⊥ SA

Mà DR // ST (DRST là hình bình hành) ⇒ ST ⊥ SA

Vậy ∠AST = 90o

...

Chúc bạn học tốt 

8 tháng 4 2020

câu 1d

+ ΔACI có BF//CI→ FC/FA=OI/AO

IΔCOI có AJ//CI (//BF)→  CI/AJ=OI/AO

→FC/FA=CI/AJ

27 tháng 3 2017

A B C D F O E K I

a)

Xét tam giác ABF và tam giác ACB có:

BAC chung

ABF = ACB (gt)

=> Tam giác ABF ~ Tam giác ACB (g - g)

=> \(\dfrac{\text{AF}}{AB}=\dfrac{AB}{AC}\)

=> \(\dfrac{\text{AF}}{4}=\dfrac{4}{8}\)

=> AF = 2 (cm)

Ta có:

AF + FC = AC

2 + FC = 8

FC = 6 (cm)

b)

D là trung điểm của BC (AD là đường trung tuyến của tam giác ABC)

=> \(DC=\dfrac{1}{2}BC\)

Kẻ đường cao AH (H \(\in\) BC)

Ta có: \(\dfrac{S_{ABC}}{S_{ADC}}=\dfrac{\dfrac{1}{2}\times AH\times AB}{\dfrac{1}{2}\times AH\times DC}=\dfrac{AB}{\dfrac{1}{2}AB}=2\)

=> SABC = 2SADC

c)

Tam giác CKA có OF // KA (gt) nên theo định lý Talet

=> \(\dfrac{FC}{FA}=\dfrac{OC}{OK}\left(1\right)\)

Tam giác OCI có KA // CI (gt) nên theo hệ quả của định lý Talet

=> \(\dfrac{OC}{OK}=\dfrac{CI}{KA}\left(2\right)\)

(1) và (2)

=> \(\dfrac{FC}{FA}=\dfrac{CI}{KA}\)

d)

Tam giác DCI có CI // BO nên theo hệ quả của định lý Talet

=> \(\dfrac{DB}{DC}=\dfrac{BO}{CI}\)

Tam giác EBO có AK // BI nên theo hệ quả của định lý Talet

=> \(\dfrac{EA}{EB}=\dfrac{AK}{BO}\)

Ta có:

\(\dfrac{DB}{DC}\times\dfrac{EA}{EB}\times\dfrac{FC}{FA}=\dfrac{BO}{CI}\times\dfrac{AK}{BO}\times\dfrac{CI}{KA}=1\)

27 tháng 3 2017

ohhhhhh batngo

phải gọi là max dài luôn á

14 tháng 7 2017

a) ΔADB và ΔABC vuông có ∠B chung ∠ ΔADB ∼ ΔCAB (g.g)

b) Vì ∠B = 2∠C (gt) ∠ ∠B1 = ∠B2 = ∠C

Do đó hai tam giác vuông ABE và ACB đồng dạng (g.g)

c) Ta có ΔADB ∼ ΔCAB (cmt)

Theo tính chất đường phân giác ta có :

d) Ta có AB = 2BD (gt)

1 tháng 6 2021

a.Xét \(\Delta ADB\)và \(\Delta CAB\)có:

  \(\widehat{ADB}=\widehat{CAB}=90^o\)

      \(\widehat{ABC}\)chung

\(\Rightarrow\Delta ADB~\Delta CAB\left(g.g\right)\) 

b.Kí hiệu: \(\widehat{ABE}=\widehat{B_1};\widehat{EBC}=\widehat{B_2}\)

Ta có:\(\widehat{B}=2\widehat{C}\)

\(\Rightarrow\widehat{B_1}=\widehat{B_2}=\widehat{C}\)

Vì \(\Delta ADB~\Delta CAB\left(g.g\right)\)

\(\Rightarrow\frac{AB}{AE}=\frac{AC}{AB}\)

\(\Rightarrow AB^2=AE.AC\)

1 tháng 6 2021

c.Ta có:\(\Delta ABB~\Delta CAB\left(g.g\right)\)(cm câu a)

\(\Rightarrow\frac{BA}{BC}=\frac{BD}{AB}\)

Theo t/c đường p/g ta có: \(\frac{BA}{BC}=\frac{EA}{EC}\)và \(\frac{BD}{BA}=\frac{FD}{FA}\)

\(\Rightarrow\frac{FD}{FA}=\frac{EA}{EC}\left(đpcm\right)\)

d.Ta có:\(AB=2BD\left(gt\right)\)

\(\Rightarrow\frac{BD}{AB}=\frac{1}{2}\)

Mà \(\frac{BD}{AB}=\frac{FD}{FA}\)(câu c)

\(\Rightarrow\frac{BD}{AB}=\frac{FD}{FA}=\frac{1}{2}\)

\(\Rightarrow FA=2FD\)

Mà \(S_{ABC}=\frac{1}{2}BC.AD\)

và \(S_{BFC}=\frac{1}{2}BC.FD\)

\(\Rightarrow S_{ABC}=3S_{BFC}\left(đpcm\right)\)

31 tháng 3 2016

a)

xét tam giác ABD và tam giác ACB có:

góc A chung;góc ABD=góc ACB =>tam giác ABD đồng dạng tam giác ACB(đpcm)

=>AD/AB=AB/AC =>AD=AB*AB/AC=2*2/4=1.vậy AD=1cm

ta lại có

AC=AD+DC =>DC=AC-AD=4-1=3cm.vậy DC=3cm

b)xét tm giác ABH vuông tại H và tam giác ADK vuông tại K có:

góc ABH=góc ADK( do tam giác ABC đồng dạng tam giác ABD,cmt)

=>tam giác ABH đồng dạng tam giác ADK(g-g)

=>AB/AD=AH/AK=BH/DK

mà AB/AD=2/1

=>AB/AD=AH/AK=BH/DK=2/1

mặt khác:

diện tích tam giác ABH/diện tích tam giác ADK=k2

=(2/1)2=4/1

=>diện tích tam giác ABH=4 diện tích tam giác ADK(đpcm)

(câu b mk cũng kg bit đúng kg nữa,mk làm theo suy nghĩ của mk,có j sai,b góp ý giúp mk nhé)

11 tháng 5 2017

\(\Rightarrow\)mình không hiểu đoạn cuối cho lắm

14 tháng 4 2016

bạn chưa biết làm phần nào z

oh sorry I don't know!!!

6747568768

8 tháng 5 2016

a/ Xét tg HBA và tg ABC, có:

góc BHA = góc BAC = 90 độ

góc B chung

Suyra: tg HBA đồng dạng với tg ABC (g-g)

b/ Ta có tg ABC vuông tại A:

\(BC^2=AC^2+AB^2\)

\(BC^2=8^2+6^2=100\)

\(\Rightarrow BC=\sqrt{100}=10\)(cm)

Ta có: \(\frac{HA}{AC}=\frac{BA}{BC}\)(tg HBA đồng dạng với tg ABC)

\(\Rightarrow\frac{HA}{8}=\frac{6}{10}\)

\(\Rightarrow HA=\frac{8.6}{10}=4,8\left(cm\right)\)