Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Δ}=\left(2m-1\right)^2-8\left(m-1\right)\)
\(=4m^2-4m+1-8m+8\)
\(=4m^2-12m+9=\left(2m-3\right)^2\)
Để phương trình có hai nghiệm phân biệt thì 2m-3<>0
hay m<>3/2
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}3x_1-4x_2=11\\x_1+x_2=\dfrac{-2m+1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_1-4x_2=11\\2x_1+2x_2=-2m+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x_1-4x_2=11\\4x_1+4x_2=-4m+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x_1=-4m+13\\4x_2=3x_1-11\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-4m+13}{7}\\4x_2=\dfrac{-12m+36}{7}-\dfrac{77}{7}=\dfrac{-12m-41}{7}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-4m+13}{7}\\x_2=\dfrac{-12m-41}{28}\end{matrix}\right.\)
Theo Vi-et, ta được: \(x_1x_2=\dfrac{m-1}{2}\)
\(\Leftrightarrow\dfrac{\left(4m-13\right)\left(12m+41\right)}{196}=\dfrac{m-1}{2}\)
\(\Leftrightarrow\left(4m-13\right)\left(12m+1\right)=98\left(m-1\right)\)
\(\Leftrightarrow48m^2+4m-156m-13-98m+98=0\)
\(\Leftrightarrow48m^2-250+85=0\)
Đến đây bạn chỉ cần giải pt bậc hai là xong rồi
\(\Delta=\left(2m-1\right)^2-8\left(m-1\right)=4m^2-12m+10\)
\(=\left(2m-3\right)^2+1>0\)
Vậy pt có 2 nghiệm pb
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1-2m}{2}\left(1\right)\\x_1x_2=\dfrac{m-1}{2}\left(2\right)\end{matrix}\right.\)
Ta có \(3x_1-4x_2=11\left(3\right)\)
Từ (1) ; (3) ta có hệ \(\left\{{}\begin{matrix}4x_1+4x_2=2-4m\\3x_1-4x_2=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x_1=13-4m\\x_2=\dfrac{1-2m}{2}-x_1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{13-4m}{7}\\x_2=\dfrac{1-2m}{2}-\dfrac{13-4m}{7}\end{matrix}\right.\)
\(x_2=\dfrac{7-14m-26+8m}{14}=\dfrac{-19-6m}{14}\)
Thay vào (2) ta được \(\left(\dfrac{13-4m}{7}\right)\left(\dfrac{-19-6m}{14}\right)=\dfrac{m-1}{2}\)
\(\Leftrightarrow m=4,125\)
a=1; b=-2m-2; c=-4
Vì ac<0
nên phương trình luôn có hai nghiệm phân biệt
\(\Delta=\left(4m-1\right)^2-4\left(2m+3\right)=16m^2-8m+4-8m-12\)
\(=16m^2-16m-8\)
Để pt có 2 nghiệm pb \(2m^2-2m-1>0\)
bạn ơi , mik tưởng 1 nhân vs 1 vẫn bằng 1 chứ sao lại bằng 4 ạ?
Để pt (1) có 2 nghiệm phân biệt
\(\Delta'=4-\left(3m-1\right)=5-3m>0\Leftrightarrow m< \dfrac{5}{3}\)
Để pt (1) có nghiệm
\(\Delta'=5-3m\ge0\Leftrightarrow m\le\dfrac{5}{3}\)
Thay \(x=-3\) vào pt \(x^2-5x+3-m=0\)
\(\Rightarrow\left(-3\right)^2-5\left(-3\right)+3-m=0\Rightarrow27-m=0\Rightarrow m=27\)
\(m=27\Rightarrow x^2-5x+3-27=0\Rightarrow x^2-5x-24=0\)
Giải pt \(x^2-5x-24=0\) ta có 2 nghiệm pb \(\left\{{}\begin{matrix}x=8\\x=-3\end{matrix}\right.\)
Vậy nghiệm còn lại là x = 8.
\(\Delta=\left(2m-1\right)^2-8\left(m-1\right)=4m^2-12m+9=\left(2m-3\right)^2\ge0\) ; \(\forall m\)
\(\Rightarrow\) Phương trình đã cho luôn có 2 nghiệm với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2m+1}{2}\\x_1x_2=\dfrac{m-1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x_1+x_2\right)=-2m+1\\4x_1x_2=2m-2\end{matrix}\right.\)
Cộng vế với vế:
\(\Rightarrow2\left(x_1+x_2\right)+4x_1x_2=-1\)
Đây là hệ thức liên hệ các nghiệm ko phụ thuộc m
\(\Delta\)\(=\left(2m+3\right)^2-4\left(3m+1\right)=4m^2+5\)> 0
=> phương trình luôn có 2 nghiệm phân biệt
Điều kiện là \(\Delta\) là số chính phương
=> Đặt: \(t^2=4m^2+5\Leftrightarrow\left(t-2m\right)\left(t+2m\right)=5\)
Vì t và m là số nguyên
=> Giải ra được: m = 1 hoặc m = - 1
+) Với m = 1 ta có: \(x^2-5x+4=0\) có nghiệm nguyên: x = 4; x = 1=> m = 1thỏa mãn
+) Với m = -1 ta có: \(x^2-x-2=0\) có nghiệm nguyên => m = - 1 thỏa mãn
Kết luận:...
Em cảm ơn cô =)