Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n không thể là số lẻ vì lúc đó ít nhất 6 số chẵn > 2 nên không thể là số nguyên tố. Dễ thấy với n = 2 số n + 7 = 9 là hợp số (tất nhiên không chỉ số đó nhưng ta không cần gì hơn), với n = 4 số n + 5 = 9 là hợp số. Với n = 6 dễ thấy cả 7 số đều là số nguyên tố.
Dễ thấy là trong 7 số đã cho có 1 số chia hết cho 7. Thật thế 7 số đã cho khi chia cho 7 có cùng số dư với 7 số n+1, n+5, n+7, n+6, n+3, n+4, n+2 mà trong 7 số tự nhiên liên tiếp có 1 số chia hết cho 7.
=> với n ≥ 8 trong 7 số đã cho có 1 số chia hết cho 7 và > 7 nên là hợp số.
=> số duy nhất thỏa mãn là n = 6
**** mik nha
n không thể là số lẻ vì lúc đó ít nhất 6 số chẵn > 2 nên không thể là số nguyên tố. Dễ thấy với n = 2 số n + 7 = 9 là hợp số (tất nhiên không chỉ số đó nhưng ta không cần gì hơn), với n = 4 số n + 5 = 9 là hợp số. Với n = 6 dễ thấy cả 7 số đều là số nguyên tố.
Dễ thấy là trong 7 số đã cho có 1 số chia hết cho 7. Thật thế 7 số đã cho khi chia cho 7 có cùng số dư với 7 số n+1, n+5, n+7, n+6, n+3, n+4, n+2 mà trong 7 số tự nhiên liên tiếp có 1 số chia hết cho 7.
=> với n ≥ 8 trong 7 số đã cho có 1 số chia hết cho 7 và > 7 nên là hợp số.
=> số duy nhất thỏa mãn là n = 6
n=2 để n+1;n+5;n+7;n+13;n+17;n+25;n+37 đều là các số nguyên tố
Nếu các số nguyên n bằng 0 tại;n+1;n+5;n+13;n+17;n+25;n+37,thì ta có ;
0+1;0+5;0+7;0+13;0+17;0+25;0+37[1;5;7;13;17;25;37]
Mà 1;5;7;13;17;25;37 chính là các nguyên tố
Suy ra tat ca cac so nguyên n=o thì tất cả các số n+1;n+5;n+7;n+13;n+17n;n+25;n+37 đều là các số nguyên tố
[nếu bài của mình đúng hay tích để nhé]
(n+1=n+5+n+7) + ( n+13+n+17+n+25) +37
n=(1+5+7+13+17+25)+37
n=68+37
n= tu tinh not nhe ban
không thể là số lẻ vì khi đó có ít nhất số chẵn nên không thể là số nguyên tố. Dễ thấy với số là hợp số (tất nhiên không chỉ số đó nhưng ta không cần gì hơn), với số là hợp số. Với dễ thấy cả số đều là số nguyên tố.
Dễ thấy là trong số đã cho có số chia hết cho . Thật thế số đã cho khi chia cho có cùng số dư với số mà trong số tự nhiên liên tiếp có số chia hết cho .
Với trong số đã cho có số chia hết cho và nên là hợp số.
Số duy nhất thỏa mãn là
Xem thêm tại đây nhé bạn : Tìm số n nguyên dương sao cho tất cả các số n+1;n+5;n+7;n+13;n+17;n+25;n+37 đều là số nguyên tố - Số học - Diễn đàn Toán học
Ta thấy: n phải là số chẵn vì trong dãy có phần dư của n là số lẻ (nếu là số lẻ thì các số trên chẵn ra hợp số)
Mà số nguyên tố chẵn duy nhất là 2 nên n = 2
Thay n = 2, ta có: n + 7 = 2 + 7 = 9 (loại vì là hợp số)
+) Với n = 4
Ta có: n + 5 = 4 + 5 = 9 (loại vì là hợp số)
+) Với n = 6
Với n = 6 thì tất cả các số trên đều là số nguyên tố (tm)
Theo nguyên lí Dirichle thì trong một phép chia cho 7 thì có nhiều nhất 6 số dư
Vậy ta dễ chứng minh để loại hết các số lớn hơn 6
Vậy n = 6 là nghiệm duy nhất cần tìm.