K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 3: 

Xét ΔCBD có CD=CB

nên ΔCBD cân tại C

Suy ra: \(\widehat{CDB}=\widehat{CBD}\)

mà \(\widehat{CDB}=\widehat{ADB}\)

nên \(\widehat{ADB}=\widehat{DBC}\)

mà hai góc này ở vị trí so le trong

nên AD//BC

hay ADCB là hình thang

23 tháng 8 2016

Bài 1 : 

Ta có : 

B+BEF+BFE=180 
D+DEF+DFE=180 
mà B+D=180=>BEF+BFE+DEF+DFE=180 
(BEF+BFE+DEF+DFE)/2=90 
mà (BEF+DEF)/2=MEF;(BFE+DFE)/2=MFE 
=>MEF+MFE=90=>EMF=90

23 tháng 8 2016
Toán Toán lớp 8alt text Huỳnh Châu GiangHuỳnh Châu Giang16/06/2016 lúc 16:07

a/Xét tứ giác ABCD có:

Góc C+D+DAB+CBA=360 độ

-> Góc C+D=3600-(DAB+CBA)                         (1)

Xét tam giác AEB có:

Góc AEB=1800-(EAB+EBA)

\(=180^o-\left(\frac{DBA}{2}+\frac{CBA}{2}\right)\)

\(=\frac{360-\left(DAB+CBA\right)}{2}\)

\(\Rightarrow AEB=360^o-\left(DAB+CBA\right)\)             (2)

Từ (1) và (2) suy ra:

Góc AEB=D+C2D+C2

Kéo dài CA thành đường thẳng x, BD thành đường thẳng y.

Có: Góc CAB+BAx=1800

ABC+ABy=1800

-> Góc CAB=3600-(BAx+ABy)                       (3)

Xét tam giác AFB:

Góc AFB=1800-(FAB+FBA)

\(=180^o-\left(\frac{BAx+ABy}{2}\right)\)

\(\Rightarrow\frac{360-BAx+ABy}{2}\)

2AFB=3600(Bax+ABy)→2⋅AFB=3600−(Bax+ABy)                (4)

Từ (3) và (4) suy ra:

\(2.AFB=A+B\)

\(_{\Rightarrow AFB=\frac{A+B}{2}}\)

 

 
1 tháng 11 2020

a) Chứng minh : BHCK là hình bình hành 

Xét tứ giác BHCK có :                MH = MK = HK/2

                                                    MB = MI = BC/2 

Suy ra : BHCK là hình bình hành 

b) BK vuông góc AB và CK vuông góc AC

Vì BHCK là hình bình hành ( cmt ) 

Suy ra : BK // HC và CK // BH ( tính chất hình bình hành )

mà CH vuông góc AB = F và BH vuông góc AC = E ( gt )

Suy ra : BK vuông góc AB và CK vuông góc AC ( Từ vuông góc đến // )

c) Chứng minh : BIKC là hình thang cân 

Vì I đối xứng với H qua BC nên BC là đường trung bình của HI 

Mà M thuộc BC    Suy ra : MH = MI ( tính chất đường trung trực ) 

mà MH = MK = HK/2 (gt)

Suy ra : MI = MH = MK = 1/2 HC 

Suy ra : Tam giác HIK vuông góc tại I 

mà BC vuông góc HI (gt)

Suy ra : IC // BC 

Suy ra : BICK là hình thang  (1) 

Ta có : BC là đường trung trực của HI (cmt) 

Suy ra : CI = CH 

1 tháng 11 2020

Tiếp ý c 

mà CH = BK ( vì BKCH là hình bình hành) 

Suy ra : BK = CI (2)

Từ ( 1) và (2) Suy ra : BICK là hình thang cân (dấu hiệu nhận biết )

d) Giả sử GHCK là hình thang cân 

Suy ra : Góc HCK = Góc GHC

mà góc HCK + góc C1 = 90 độ 

      góc GHC + góc C2 = 90 độ 

Suy ra : Góc C1= góc C2 

Suy ra : CF là đường cao đồng thời là đường phân giác của tam giác ABC 

Suy ra : Tam giác ABC cân tại C 

31 tháng 7 2016

Cho tứ giác ABCD có 2 đường chéo AC và BD bằng nhau và cắt nhau tại O sao cho OC > OD. Gọi F, E, P, Q theo thứ tự là trung điểm AB, BC, CD, AD. Gọi Ot là phân giác góc DOC. Chứng minh rằng: Ot vuông góc QE.

Các bạn giúp mình với.. Mình sắp nộp bài rồi. Giải cụ thể nhé. Camon.

Vì OE = AE và OF = DF => EF là đường TB của tam giác OAD => EF = AD/2 (1) 

Vì ABCD là hình thang => góc OAB = OCD = 60* và ODC = OBA = 60* 
==> tam giác OCD đều 

∆ OCD đều có CF là đường trung tuyến nên đồng thời là đường cao => CF _l_ BD 
=> tam giác BCF vuông tại F có trung tuyến FG => FG = BC / 2 (2) 

Tương tự ==> EG = BC / 2 (3) 

Vì 2 tam giác OAB và OCD đều => OA = OB và OC = OD 
=> OA + OC = OB + OD <=> AC = BD => ABCD là hình thang cân => AD = BC (4) 

Từ (1)(2)(3)(4) => EF = EG = FG => tam giác EFG đều

31 tháng 7 2016

Vì OE = AE và OF = DF => EF là đường TB của tam giác OAD => EF = AD/2 (1) 

Vì ABCD là hình thang => góc OAB = OCD = 60* và ODC = OBA = 60* 
==> tam giác OCD đều 

∆ OCD đều có CF là đường trung tuyến nên đồng thời là đường cao => CF _l_ BD 
=> tam giác BCF vuông tại F có trung tuyến FG => FG = BC / 2 (2) 

Tương tự ==> EG = BC / 2 (3) 

Vì 2 tam giác OAB và OCD đều => OA = OB và OC = OD 
=> OA + OC = OB + OD <=> AC = BD => ABCD là hình thang cân => AD = BC (4) 

Từ (1)(2)(3)(4) => EF = EG = FG => tam giác EFG đều