Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
Xét ΔCBD có CD=CB
nên ΔCBD cân tại C
Suy ra: \(\widehat{CDB}=\widehat{CBD}\)
mà \(\widehat{CDB}=\widehat{ADB}\)
nên \(\widehat{ADB}=\widehat{DBC}\)
mà hai góc này ở vị trí so le trong
nên AD//BC
hay ADCB là hình thang
Bài 1 :
Ta có :
B+BEF+BFE=180
D+DEF+DFE=180
mà B+D=180=>BEF+BFE+DEF+DFE=180
(BEF+BFE+DEF+DFE)/2=90
mà (BEF+DEF)/2=MEF;(BFE+DFE)/2=MFE
=>MEF+MFE=90=>EMF=90
a/Xét tứ giác ABCD có:
Góc C+D+DAB+CBA=360 độ
-> Góc C+D=3600-(DAB+CBA) (1)
Xét tam giác AEB có:
Góc AEB=1800-(EAB+EBA)
\(=180^o-\left(\frac{DBA}{2}+\frac{CBA}{2}\right)\)
\(=\frac{360-\left(DAB+CBA\right)}{2}\)
\(\Rightarrow AEB=360^o-\left(DAB+CBA\right)\) (2)
Từ (1) và (2) suy ra:
Góc AEB=D+C2D+C2
Kéo dài CA thành đường thẳng x, BD thành đường thẳng y.
Có: Góc CAB+BAx=1800
ABC+ABy=1800
-> Góc CAB=3600-(BAx+ABy) (3)
Xét tam giác AFB:
Góc AFB=1800-(FAB+FBA)
\(=180^o-\left(\frac{BAx+ABy}{2}\right)\)
\(\Rightarrow\frac{360-BAx+ABy}{2}\)
→2⋅AFB=3600−(Bax+ABy)→2⋅AFB=3600−(Bax+ABy) (4)
Từ (3) và (4) suy ra:
\(2.AFB=A+B\)
\(_{\Rightarrow AFB=\frac{A+B}{2}}\)
a) Chứng minh : BHCK là hình bình hành
Xét tứ giác BHCK có : MH = MK = HK/2
MB = MI = BC/2
Suy ra : BHCK là hình bình hành
b) BK vuông góc AB và CK vuông góc AC
Vì BHCK là hình bình hành ( cmt )
Suy ra : BK // HC và CK // BH ( tính chất hình bình hành )
mà CH vuông góc AB = F và BH vuông góc AC = E ( gt )
Suy ra : BK vuông góc AB và CK vuông góc AC ( Từ vuông góc đến // )
c) Chứng minh : BIKC là hình thang cân
Vì I đối xứng với H qua BC nên BC là đường trung bình của HI
Mà M thuộc BC Suy ra : MH = MI ( tính chất đường trung trực )
mà MH = MK = HK/2 (gt)
Suy ra : MI = MH = MK = 1/2 HC
Suy ra : Tam giác HIK vuông góc tại I
mà BC vuông góc HI (gt)
Suy ra : IC // BC
Suy ra : BICK là hình thang (1)
Ta có : BC là đường trung trực của HI (cmt)
Suy ra : CI = CH
Tiếp ý c
mà CH = BK ( vì BKCH là hình bình hành)
Suy ra : BK = CI (2)
Từ ( 1) và (2) Suy ra : BICK là hình thang cân (dấu hiệu nhận biết )
d) Giả sử GHCK là hình thang cân
Suy ra : Góc HCK = Góc GHC
mà góc HCK + góc C1 = 90 độ
góc GHC + góc C2 = 90 độ
Suy ra : Góc C1= góc C2
Suy ra : CF là đường cao đồng thời là đường phân giác của tam giác ABC
Suy ra : Tam giác ABC cân tại C
Cho tứ giác ABCD có 2 đường chéo AC và BD bằng nhau và cắt nhau tại O sao cho OC > OD. Gọi F, E, P, Q theo thứ tự là trung điểm AB, BC, CD, AD. Gọi Ot là phân giác góc DOC. Chứng minh rằng: Ot vuông góc QE.
Các bạn giúp mình với.. Mình sắp nộp bài rồi. Giải cụ thể nhé. Camon.
Vì OE = AE và OF = DF => EF là đường TB của tam giác OAD => EF = AD/2 (1)
Vì ABCD là hình thang => góc OAB = OCD = 60* và ODC = OBA = 60*
==> tam giác OCD đều
∆ OCD đều có CF là đường trung tuyến nên đồng thời là đường cao => CF _l_ BD
=> tam giác BCF vuông tại F có trung tuyến FG => FG = BC / 2 (2)
Tương tự ==> EG = BC / 2 (3)
Vì 2 tam giác OAB và OCD đều => OA = OB và OC = OD
=> OA + OC = OB + OD <=> AC = BD => ABCD là hình thang cân => AD = BC (4)
Từ (1)(2)(3)(4) => EF = EG = FG => tam giác EFG đều
Vì OE = AE và OF = DF => EF là đường TB của tam giác OAD => EF = AD/2 (1)
Vì ABCD là hình thang => góc OAB = OCD = 60* và ODC = OBA = 60*
==> tam giác OCD đều
∆ OCD đều có CF là đường trung tuyến nên đồng thời là đường cao => CF _l_ BD
=> tam giác BCF vuông tại F có trung tuyến FG => FG = BC / 2 (2)
Tương tự ==> EG = BC / 2 (3)
Vì 2 tam giác OAB và OCD đều => OA = OB và OC = OD
=> OA + OC = OB + OD <=> AC = BD => ABCD là hình thang cân => AD = BC (4)
Từ (1)(2)(3)(4) => EF = EG = FG => tam giác EFG đều