Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\left(x-y\right)^2+\left(x+y\right)^2-2\left(x-y\right)\left(x+y\right)-4x^2\\ P=\left(x-y-x-y\right)^2-4x^2\\ P=4y^2-4x^2=4\left(y-x\right)\left(x+y\right)\)
Sao lạ thế nhỉ, áp cái được luôn?
\(2a+\frac{b}{a}+\frac{c}{b}\ge3\sqrt[3]{2a.\frac{b}{a}.\frac{c}{b}}=3\sqrt[3]{2c}\)
Đẳng thức tự xét.
\(A=x^2+x+1=x^2+2.0,5x+0,5^2+0,75=\left(x+0,5\right)^2+0,75\ge0,75>0\)
Vậy A > 0
Trong tam giác ABC ta có:
E là trung điểm của cạnh AB
D là trung điểm của cạnh AC
Nên ED là đường trung bình của ∆ ABC
⇒ED//BC⇒ED//BC và ED=\(\frac{1}{2}BC\) (tính chất đường trung bình của tam giác)
Trong hình thang BCDE, ta có: BC // DE
M là trung điểm cạnh bên BE
N là trung điểm cạnh bên CD
Nên MN là đường trung bình hình thang BCDE ⇒ MN // DE
\(MN=\frac{DE+BC}{2}=\frac{\frac{BC}{2}+BC}{2}=\frac{3BC}{4}\)(tính chất đường trung bình hình thang)
Trong tam giác BED ta có:
M là trung điểm của BE
MI // DE
Suy ra: MI là đường trung bình của ∆ BED
\(\Rightarrow MI=\frac{1}{2}DE=\frac{1}{4}BC\)(tính chất đường trung bình tam giác)
Trong tam giác CED ta có:
N là trung điểm của CD
NK // DE
Suy ra: NK là đường trung bình của ∆ BED
\(\Rightarrow NK=\frac{1}{2}DE=\frac{1}{4}BC\)(tính chất đường trung bình tam giác)
\(IK=MN-\left(MI+NK\right)\)
\(=\frac{3}{4}BC-\left(\frac{1}{4}BC+\frac{1}{4}BC\right)=\frac{1}{4}BC\)
\(\Rightarrow MI=IK=KN=\frac{1}{4}BC\)
Chúc bạn học tốt !!!
Cảm ơn hoang viet nhat nhé, nhưng lời giải này không được cô giáo mình chấp nhận vì cô bảo chưa học đến đường trung bình của hình thang nên nếu mình làm thế trên bảng thì các bạn sẽ không hiểu.
Dựa vào $a,b,c>0$ và $abc=1$ thì không tính được giá trị của biểu thức trên nhé em. Em chỉ có thể tính được giá trị nhỏ nhất của nó thôi.
Thầy cho em hỏi có tính được giá trị lớn nhất không thầy, em cần giá trị lớn nhất là hạnh phúc rồi ạ.