K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2021

Giả sử \(a=\sqrt{3}+\sqrt{5}\inℚ\)

\(\Rightarrow a^2=3+2\sqrt{3}.\sqrt{5}+5\inℚ\)

\(\Rightarrow a^2-8=2\sqrt{15}\inℚ\)

Vô lý do \(a^2-8\inℚ;2\sqrt{15}\in I\)

Do đó \(\sqrt{3}+\sqrt{5}\)là số vô tỷ.

27 tháng 10 2021

a: \(=1-2-3-4=-8\)

b: \(=8\sqrt{7}\cdot\sqrt{7}-5\sqrt{7}\cdot\sqrt{7}+6\sqrt{7}\cdot\sqrt{7}-4\sqrt{7}\cdot\sqrt{7}\)

\(=56-35+42-28\)

=21+42-28

=35

Bài 3: 

a) Ta có: \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{3}{\sqrt{x}-3}\right)\cdot\dfrac{\sqrt{x}+3}{x+9}\)

\(=\dfrac{x-3\sqrt{x}+3\sqrt{x}+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}+3}{x+9}\)

\(=\dfrac{1}{\sqrt{x}-3}\)

b) Ta có: \(B=21\left(\sqrt{2+\sqrt{3}}+\sqrt{3-\sqrt{5}}\right)^2-6\left(\sqrt{2-\sqrt{3}}+\sqrt{3+\sqrt{5}}\right)^2-15\sqrt{15}\)

\(=21\left(5+\sqrt{3}-\sqrt{5}+2\sqrt{\left(2+\sqrt{3}\right)\left(3-\sqrt{5}\right)}\right)-6\left(5-\sqrt{3}+\sqrt{5}+2\sqrt{\left(2-\sqrt{3}\right)\left(3+\sqrt{5}\right)}\right)-15\sqrt{15}\)

\(=21\left(4+\sqrt{15}\right)-6\left(4+\sqrt{15}\right)-15\sqrt{15}\)

\(=84+21\sqrt{15}-24-6\sqrt{15}-15\sqrt{15}\)

=60

Bài 1: 

Vì (d)//y=-2x+1 nên a=-2

Vậy: y=-2x+b

Thay x=1 và y=2 vào (d),ta được:

b-2=2

hay b=4

Gọi tuổi của Minh là x

=>Tuổi của Ninh là x+2

Tuổi của Lan là 1/2x

Theo đề, ta co: 1/2x+x+2+x=27

=>2,5x=25

=>x=10

18 tháng 3 2023

vâng em cám ơn ạ

1) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot10=6\cdot8=48\)

hay AH=4,8(cm)

 

21 tháng 7 2021

a, Xét tam giác ABC vuông tại A, đường cao AH

Áp dụng định lí Pytago cho tam giác ABC vuông tại A

\(BC^2=AB^2+AC^2=\dfrac{81}{4}+36=\dfrac{225}{4}\Rightarrow BC=\dfrac{15}{2}\)cm 

* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{\dfrac{81}{4}}{\dfrac{15}{2}}=\dfrac{27}{10}\)cm 

=> \(CH=BC-BH=\dfrac{15}{2}-\dfrac{27}{10}=\dfrac{24}{5}\)cm 

* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}\)

\(=\dfrac{4,5.6}{\dfrac{15}{2}}=\dfrac{18}{5}\)cm 

21 tháng 7 2021

tam giác ABC vuông tại A nên áp dụng Py-ta-go

\(\Rightarrow BC^2=AB^2+AC^2=\left(4,5\right)^2+6^2=\dfrac{225}{4}\Rightarrow BC=\dfrac{15}{2}=7,5\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{\left(4,5\right)^2}{7,5}=\dfrac{27}{10}=2,7\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AC^2=CH.BC\Rightarrow CH=\dfrac{AC^2}{BC}=\dfrac{6^2}{7,5}=\dfrac{24}{5}=4,8\left(cm\right)\)

20 tháng 1 2022

Gọi thời gian làm riêng của 2 người làm xong công việc lần lượt a ; b ( a;b > 0 ) 

1 giờ người thứ nhất làm được 1/a công việc 

1 giờ người thứ 2 làm được 1/b công việc 

Theo bài ra ta có hệ phương trình \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{36}\\\dfrac{6}{x}+\dfrac{3}{y}=\dfrac{2}{3}\end{matrix}\right.\)Đặt 1/x = u ; 1/y = v 

\(\Leftrightarrow\left\{{}\begin{matrix}u+v=\dfrac{5}{36}\\6u+3v=\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u=\dfrac{1}{12}\\v=\dfrac{1}{18}\end{matrix}\right.\)Theo cách đặ x = 12 ; y = 18 

Vậy ...