K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 12 2021

\(\Rightarrow\dfrac{1}{\left(2x-1\right)\left(2x-2\right)}+\dfrac{1}{\left(2x-2\right)\left(2x-3\right)}+\dfrac{1}{\left(2x-3\right)\left(2x-4\right)}+\dfrac{1}{\left(2x-4\right)\left(2x-5\right)}=\dfrac{4}{21}\)

\(\Rightarrow\dfrac{1}{2x-2}-\dfrac{1}{2x-1}+\dfrac{1}{2x-3}-\dfrac{1}{2x-2}+\dfrac{1}{2x-4}-\dfrac{1}{2x-3}+\dfrac{1}{2x-5}-\dfrac{1}{2x-4}=\dfrac{4}{21}\)

\(\Rightarrow\dfrac{1}{2x-5}-\dfrac{1}{2x-1}=\dfrac{4}{21}\)

\(\Rightarrow\dfrac{4}{\left(2x-1\right)\left(2x-5\right)}=\dfrac{4}{21}\)

\(\Rightarrow\left(2x-1\right)\left(2x-5\right)=21\)

\(\Rightarrow4x^2-12x-16=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=4\end{matrix}\right.\)

8 tháng 12 2021

\(ĐK:x\ne\dfrac{1}{2};x\ne1;x\ne\dfrac{3}{2};x\ne2;x\ne\dfrac{5}{2}\\ PT\Leftrightarrow\dfrac{1}{\left(2x-1\right)\left(x-1\right)}+\dfrac{1}{\left(x-1\right)\left(3x-2\right)}+\dfrac{1}{\left(3x-2\right)\left(x-2\right)}+\dfrac{1}{\left(x-2\right)\left(5x-2\right)}=\dfrac{4}{21}\\ \Leftrightarrow2\left[\dfrac{\dfrac{1}{2}}{\left(x-\dfrac{1}{2}\right)\left(x-1\right)}+\dfrac{\dfrac{1}{2}}{\left(x-1\right)\left(x-\dfrac{3}{2}\right)}+\dfrac{\dfrac{1}{2}}{\left(x-\dfrac{3}{2}\right)\left(x-2\right)}+\dfrac{\dfrac{1}{2}}{\left(x-2\right)\left(x-\dfrac{5}{2}\right)}\right]=\dfrac{4}{21}\)

\(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{1}{x-\dfrac{1}{2}}+\dfrac{1}{x-\dfrac{3}{2}}-\dfrac{1}{x-1}+\dfrac{1}{x-2}-\dfrac{1}{x-\dfrac{3}{2}}+\dfrac{1}{x-\dfrac{5}{2}}-\dfrac{1}{x-2}=\dfrac{2}{21}\\ \Leftrightarrow\dfrac{1}{x-1}-\dfrac{1}{x-\dfrac{5}{2}}=\dfrac{2}{21}\\ \Leftrightarrow\dfrac{x-\dfrac{5}{2}-x+1}{\left(x-1\right)\left(x-\dfrac{5}{2}\right)}=\dfrac{2}{21}\\ \Leftrightarrow\dfrac{-\dfrac{3}{2}}{x^2-\dfrac{7}{2}x+\dfrac{5}{2}}=\dfrac{2}{21}\\ \Leftrightarrow x^2-\dfrac{7}{2}x+\dfrac{5}{2}=-\dfrac{63}{4}\\ \Leftrightarrow4x^2-14x+10=-63\\ \Leftrightarrow4x^2-14x+73=0\\ \Leftrightarrow x\in\varnothing\)

23 tháng 4 2021

undefined

23 tháng 4 2021

\(\dfrac{x+2}{x-1}=\dfrac{x-1}{x-3}\) (1)

ĐKXĐ: \(x\ne1;x\ne3\)

(1) \(\Leftrightarrow\left(x+2\right)\left(x-3\right)=\left(x-1\right)^2\)

\(\Leftrightarrow x^2-3x+2x-6=x^2-2x+1\)

\(\Leftrightarrow-3x+2x+2x=1+6\)

\(\Leftrightarrow x=7\) (nhận)

Vậy S = {7}

Bài 8:

a: Khi a=1 thì phương trình sẽ là \(\left(1-4\right)x-12x+7=0\)

=>-3x-12x+7=0

=>-15x+7=0

=>-15x=-7

hay x=7/15

b: Thay x=1 vào pt, ta được:

\(a^2-4-12+7=0\)

\(\Leftrightarrow\left(a-3\right)\left(a+3\right)=0\)

hay \(a\in\left\{3;-3\right\}\)

c: Pt suy ra là \(\left(a^2-16\right)x+7=0\)

Để phương trình đã cho luôn có một nghiệm duy nhất thì (a-4)(a+4)<>0

hay \(a\notin\left\{4;-4\right\}\)

=>0,2x+0,4-0,5x=0,25-0,5x+0,25

=>0,2x+0,4=0,5

=>0,2x=0,1

=>x=1/2

7 tháng 3 2021

\(x^2\left(x+4,5\right)=13,5\)

<=>\(x^3+4,5x^2-13,5=0\)

<=> \(x^3+3x^2+1,5x^2+4,5x-4,5x-13,5=0\)

<=>\(x^2\left(x+3\right)+1,5x\left(x+3\right)-4,5\left(x+3\right)=0\)

<=>\(\left(x+3\right)\left(x^2+1,5x-4,5\right)=0\)

<=>\(\left(x+3\right)\left[x^2+3x-1,5-4,5\right]=0\)

<=>\(\left(x+3\right)\left[x\left(x+3\right)-1,5\left(x+3\right)\right]=0\)

<=>\(\left(x+3\right)^2\left(x-1,5\right)=0\)

<=> \(\left[{}\begin{matrix}\left(x+3\right)^2=0\\x-1,5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1,5\end{matrix}\right.\)

Vậy...

Ta có: \(x^2\left(x+4.5\right)=13.5\)

\(\Leftrightarrow x^3+\dfrac{9}{2}x^2-\dfrac{27}{2}=0\)

\(\Leftrightarrow2x^3+9x^2-27=0\)

\(\Leftrightarrow2x^3-3x^2+12x^2-18x+18x-27=0\)

\(\Leftrightarrow x^2\left(2x-3\right)+12x\left(2x-3\right)+9\left(2x-3\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(x^2+12x+9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x^2+12x+9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\\left(x+6\right)^2=27\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x+6=3\sqrt{3}\\x+6=-3\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=3\sqrt{3}-6\\x=-3\sqrt{3}-6\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{3}{2};3\sqrt{3}-6;-3\sqrt{3}-6\right\}\)

17 tháng 3 2016

-X2+18x-56=0

giai X=14

         x=4

1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

17 tháng 3 2016

x=14 hoặc x=4

24 tháng 3 2017

từ trên ta có (x+2)/13+(2x+45)/15-(3x+8)/37-(4x+69)/9=0

(x+2)/13+1+(2x+45)/15-1-(3x+8)/37-1-(4x+69)/9+1=0

(x+15)/13+(2x+30)/15-((3x+8)/37+1)-((4x+69)/9-1)=0

(x+15)/13+2(x+15)/15-3(x+15)/37-4(x+15)/9=0

(x+15)(1/13+2/15-3/37-4/9)=0

suy ra x+15=0

x=-15

26 tháng 11 2020

\(\frac{x+2}{13}+\frac{2x+45}{15}=\frac{3x+8}{37}+\frac{4x+69}{9}\)

<=> \(\left(\frac{x+2}{13}+1\right)+\left(\frac{2x+45}{15}-1\right)=\left(\frac{3x+8}{37}+1\right)+\left(\frac{4x+69}{9}-1\right)\)

<=> \(\frac{x+2+13}{13}+\frac{2x+45-15}{15}=\frac{3x+8+37}{37}+\frac{4x+69-9}{9}\)

<=> \(\frac{x+15}{13}+\frac{2\left(x+15\right)}{13}=\frac{3\left(x+15\right)}{37}+\frac{4\left(x+15\right)}{9}\)

<=> \(\frac{x+15}{13}+\frac{2\left(x+15\right)}{13}-\frac{3\left(x+15\right)}{37}-\frac{4\left(x+15\right)}{9}=0\)

<=> \(\left(x+15\right)\left(\frac{1}{13}+\frac{2}{13}-\frac{3}{37}-\frac{4}{9}\right)=0\)

Vì \(\frac{1}{13}+\frac{2}{13}-\frac{3}{37}-\frac{4}{9}\ne0\)

<=> x + 15 = 0

<=> x = -15