K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2021

đề hỏi là xác định bảng nào là đại lượng tỉ lệ thuận mà chứ có kêu tìm gì đâu bạn

4 tháng 12 2021

nhầm đề :) 

14 tháng 11 2021

Tỉ lệ \(x=\dfrac{y}{-5}\)

x             -4                 -1                2                   3

y             20                 5               -10               -15

Bài 4: 

a: Xét tứ giác BGCH có 

M là trung điểm của GH

M là trung điểm của BC

Do đó; BGCH là hình bình hành

SUy ra: BG//CH

b: Xét ΔBMK vuông tại M và ΔCMJ vuông tại M có

MB=MC

\(\widehat{MBK}=\widehat{MCJ}\)

Do đó: ΔBMK=ΔCMJ

Suy ra: BK=CJ

Bài 5: 

a: \(=4x^2y^3\)

b: \(=\dfrac{9}{2}x^2y\)

c: \(=xyz^2\left(\dfrac{3}{4}-\dfrac{1}{4}+\dfrac{1}{2}\right)=xyz^2\)

12 tháng 3 2022

Bài 4

Nhóm 1: \(\dfrac{5}{3}x^2y,2x^2y,x^2y,\dfrac{1}{2}x^2y,\dfrac{-1}{2}x^2y,\dfrac{-2}{5}x^2y,0x^2y,-4x^2y\)

Nhóm 2: \(\left(xy\right)^2,3x^2y^2\)

Bài 5

\(a,3x^2y^3+x^2y^3\)

\(=4x^2y^3\)

\(b,5x^2y-\dfrac{1}{2}x^2y\)

\(=\left(5-\dfrac{1}{2}\right)\left(x^2y\right)\)

\(=\dfrac{9}{2}x^2y\)

\(c,\dfrac{3}{4}xyz^2+\dfrac{1}{2}xyz^2-\dfrac{1}{4}xyz^2\)

\(=\left(\dfrac{3}{4}+\dfrac{1}{2}-\dfrac{1}{4}\right)\left(xyz^2\right)\)

\(=\left(\dfrac{3}{4}+\dfrac{2}{4}-\dfrac{1}{4}\right)\left(xyz^2\right)\)

\(=xyz^2\)

Bài 6

\(a,\left(-2xy^3\right)\left(\dfrac{1}{3}xy\right)^2\)

\(=\left(-2.\dfrac{1}{9}\right)\left(x.x^2\right)\left(y^3y^2\right)\)

\(=\dfrac{-2}{9}x^3y^5\)

Bậc: 3 + 5 = 8

Hệ số: \(\dfrac{-2}{9}\)

\(b,18x^2y^2\left(\dfrac{-1}{6}x^3y\right)\)

\(=\left(-18.\dfrac{1}{6}a\right)\left(x^2x^2\right)\left(y^2y^3\right)\)

\(=-3ax^4y^5\)

Bậc: 4 + 5 = 9

Hệ số: \(-3a\)

11 tháng 3 2022

là gì thế

 

23 tháng 6 2022

Bài 4:

\(f\left(x\right)+x.f\left(-x\right)=x+1\) (*)

Thay \(x=1\) vào (*), ta có:

\(f\left(1\right)+1.f\left(-1\right)=1+1\Rightarrow f\left(1\right)+f\left(-1\right)=2\) (**)

Thay \(x=-1\) vào (*), ta có:

\(f\left(-1\right)+\left(-1\right).f\left(-\left(-1\right)\right)=-1+1\Rightarrow f\left(-1\right)-f\left(1\right)=0\) (***)

Trừ (**) và (***) vế theo vế, ta có:

\(\left(f\left(1\right)+f\left(-1\right)\right)-\left(f\left(-1\right)-f\left(1\right)\right)=2-0\)

\(\Rightarrow f\left(1\right)+f\left(-1\right)-f\left(-1\right)+f\left(1\right)=2\)

\(\Rightarrow\left(f\left(1\right)+f\left(1\right)\right)+\left(f\left(-1\right)-f\left(-1\right)\right)=2\)

\(\Rightarrow2.f\left(1\right)=2\)

\(\Rightarrow f\left(1\right)=1\)

16 tháng 11 2021

nhận xét \(\left(2x-3y\right)^4\ge0;\left(4y-3z\right)^2\ge0;|x+y+z-483|\ge0\)

=> \(\hept{\begin{cases}2x-3y=0\\4y-3z=0\\x+y+z=483\end{cases}}< =>\hept{\begin{cases}x=161\\y=\frac{322}{3}\\z=\frac{644}{3}\end{cases}}\)

13 tháng 10 2021

Bài 1 :

a ) Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{12}=\frac{y}{-8}=\frac{x+y}{12+\left(-8\right)}=\frac{-48}{4}=-12.\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{12}=-12\\\frac{y}{-8}=-12\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-144\\y=96\end{cases}}\)

b ) Từ \(x\):\(\left(-7\right)\)\(y\)\(10\)

\(\Rightarrow\)\(\frac{x}{-7}=\frac{y}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{-7}=\frac{y}{10}=\frac{y-x}{10-\left(-7\right)}=\frac{-34}{17}=-2\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{-7}=-2\\\frac{y}{10}=-2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=14\\y=-20\end{cases}}\)

c ) Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{15}=\frac{y}{-12}=\frac{2x}{30}=\frac{y}{-12}=\frac{2x+y}{30+\left(-12\right)}=\frac{-360}{18}=-20\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{15}=-20\\\frac{y}{-12}=-20\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-300\\y=240\end{cases}}\)

d ) Từ \(2x=-3y\)\(\Rightarrow\)\(\frac{x}{-3}=\frac{y}{2}\)

Áp dugj tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{-3}=\frac{y}{2}=\frac{x}{-3}=\frac{5y}{10}=\frac{x-5y}{-3-10}=\frac{-130}{-13}=10\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{-3}=10\\\frac{y}{2}=10\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-30\\y=20\end{cases}}\)

13 tháng 10 2021

Bài 2 :

a ) Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{2}=\frac{y}{-3}=\frac{z}{5}=\frac{x+y-z}{2+\left(-3\right)-5}=\frac{-54}{-6}=9.\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=9\\\frac{y}{-3}=9\\\frac{z}{5}=9\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=18\\y=-27\\z=45\end{cases}}\)

b ) Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{4}=\frac{y}{-7}=\frac{z}{3}=\frac{x}{4}=\frac{2y}{-14}=\frac{z}{3}=\frac{x+2y-z}{4+\left(-14\right)-3}=\frac{-39}{-13}=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{4}=3\\\frac{y}{-7}=3\\\frac{z}{3}=3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=12\\y=-21\\z=9\end{cases}}\)

17 tháng 10 2021

Ta có: \(\widehat{A_1}=\widehat{B_1}\)

mà hai góc này là hai góc ở vị trí đồng vị

nên a//b(1)

Ta có: \(\widehat{C_1}=\widehat{C_2}\)

mà \(\widehat{C_1}+\widehat{C_2}=180^0\)

nên \(\widehat{C_1}=\widehat{C_2}=90^0\)

=> Suy ra: m\(\perp\)a(2)

Từ (1) và (2) suy ra m\(\perp\)b

17 tháng 10 2021

mình cảm ơn :3