K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2021

P= (\(\frac{1}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+1}\)) : \(\frac{\sqrt{x}}{x+\sqrt{x}}\)\(\frac{\sqrt{x}+1+x}{\sqrt{x}\left(\sqrt{x}+1\right)}\):\(\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)=\(\frac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\).

(\(\sqrt{x}+1\)) =\(\frac{x+\sqrt{x}+1}{\sqrt{x}}\)(ĐKXĐ : x > 0 )

P=\(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}\)=\(\frac{\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}-1\right)-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)\(\frac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)\(\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)=\(\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)=\(\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

(ĐKXĐ: x\(\ge\)0,  x\(\ne\)1)

17 tháng 8 2021

dạng này dễ mà bạn 

bạn tìm ĐK, đối chiếu giá trị với ĐK thấy thỏa mãn rồi thay vô 

toàn SCP nên tính cũng đơn giản:)

17 tháng 8 2021

1) Thay x = 64 (TMĐK ) vào A, có :

           A = \(\frac{\sqrt{64}}{\sqrt{64}-2}\)=\(\frac{4}{3}\)

     Vậy A = \(\frac{4}{3}\)khi x = 64

2)  Thay x = 36 ( TMĐK ) vào A, có

        A =\(\frac{\sqrt{36}+4}{\sqrt{36}+2}\)=\(\frac{5}{4}\)

     Vậy A =\(\frac{5}{4}\)khi x = 36

3)   Thay x=9 (TMĐK  ) vào A, có :

         A= \(\frac{\sqrt{9}-5}{\sqrt{9}+5}\)=  \(\frac{-1}{4}\)

     Vậy A=\(\frac{-1}{4}\)khi x = 9

4)   Thay x = 25( TMĐK ) vào A có:

         A =\(\frac{2+\sqrt{25}}{\sqrt{25}}\)=\(\frac{7}{5}\)

      Vậy A=\(\frac{7}{5}\) khi x = 25

29 tháng 8 2021

a, \(P=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}\)ĐK : \(x\ge0;x\ne1\)

\(=\frac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{x-1}=\frac{x-2\sqrt{x}+1}{x-1}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

b, \(B=\frac{3x-4}{x-2\sqrt{x}}-\frac{\sqrt{x}+2}{\sqrt{x}}+\frac{\sqrt{x}-1}{2-\sqrt{x}}\)ĐK : \(x>0;x\ne4\)

\(=\frac{3x-4-\left(x-4\right)-\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\frac{3x-4-x+4-x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}=\frac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-2}\)

29 tháng 8 2021

c, \(Q=\frac{3}{\sqrt{a}-3}+\frac{2}{\sqrt{a}+3}+\frac{a-5\sqrt{a}-3}{a-9}\)ĐK : \(a\ge0;a\ne9\)

\(=\frac{3\sqrt{a}+9+2\sqrt{a}-6+a-5\sqrt{a}-3}{a-9}=\frac{a}{a-9}\)

d, \(B=\frac{x}{x-4}-\frac{1}{2-\sqrt{x}}+\frac{1}{\sqrt{x}+2}\)ĐK : \(x\ge0;x\ne4\)

\(=\frac{x}{x-4}+\frac{\sqrt{x}+2}{x-4}+\frac{\sqrt{x}-2}{x-4}=\frac{x+2\sqrt{x}}{x-4}=\frac{\sqrt{x}}{\sqrt{x}-2}\)

25 tháng 8 2021

1, Với \(x\ge0;x\ne25\)

\(A=\frac{\sqrt{x}-5}{\sqrt{x}+5}< \frac{1}{3}\Leftrightarrow\frac{\sqrt{x}-5}{\sqrt{x}+5}-\frac{1}{3}< 0\)

\(\Leftrightarrow\frac{3\sqrt{x}-15-\sqrt{x}-5}{3\left(\sqrt{x}+5\right)}< 0\Leftrightarrow\frac{2\sqrt{x}-20}{3\left(\sqrt{x}+5\right)}< 0\)

\(\Leftrightarrow\sqrt{x}-10< 0\Leftrightarrow x< 100\)Kết hợp với đk vậy \(0\le x< 100;x\ne25\)

2, Với \(x\ge0;x\ne4;9\)

\(P=\frac{\sqrt{x}-2}{\sqrt{x}+1}>0\Rightarrow\sqrt{x}-2>0\Leftrightarrow x>4\)

Vậy \(x>4;x\ne9\)

25 tháng 8 2021

3, Với \(x>0;x\ne9\)

\(P=\frac{x}{\sqrt{x}-2}-1>0\Leftrightarrow\frac{x-\sqrt{x}+2}{\sqrt{x}-2}>0\Leftrightarrow x>4\)

Vậy \(x>4;x\ne9\)

4, Với \(x>0;x\ne1;9\)

\(P=\frac{\sqrt{x}+1}{\sqrt{x}-3}-1< 0\Leftrightarrow\frac{\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}-3}< 0\Rightarrow\sqrt{x}-3< 0\Leftrightarrow x< 9\)

Kết hợp với đk vậy \(0< x< 9;x\ne1\)

18 tháng 10 2021

Bài III:

1: Ta có: \(\sqrt{x-3}=5\)

\(\Leftrightarrow x-3=25\)

hay x=28

2: Ta có: \(\dfrac{\sqrt{x}-2}{\sqrt{x}-5}=\dfrac{1}{3}\)

\(\Leftrightarrow3\sqrt{x}-6=\sqrt{x}-5\)

\(\Leftrightarrow2\sqrt{x}=1\)

hay \(x=\dfrac{1}{4}\)

3 tháng 9 2021

Bài 2a 

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(AH^2=BH.CH\Rightarrow CH=\frac{AH^2}{BH}=\frac{256}{25}\)cm 

-> BC = HB + CH = \(25+\frac{256}{25}=\frac{881}{25}\)cm 

Áp dụng định lí Pytago của tam giác ABH vuông tại H 

\(AB=\sqrt{AH^2+HB^2}=\sqrt{881}\)cm 

Áp dụng định lí Pytago tam giác ABC vuông tại A 

\(AC=\sqrt{BC^2-AB^2}=18,9...\)cm 

3 tháng 9 2021

Bài 2c 

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : 

\(AH^2=HB.HC=3.4=12\Rightarrow AH=2\sqrt{3}\)cm 

Theo định lí Pytago tam giác AHB vuông tại H

\(AB=\sqrt{AH^2+HB^2}=\sqrt{21}\)cm 

* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{12}=\frac{1}{21}+\frac{1}{AC^2}\Rightarrow AC=2\sqrt{7}\)cm 

8.31:

a: Xét ΔABD có AM/AB=AQ/AD

nên MQ//BD và MQ=BD/2

Xét ΔCBD có CN/CB=CP/CD

nên NP//BD và NP=BD/2

=>MQ//NP và MQ=NP

XétΔBAC có BM/BA=BN/BC

nên MN//AC

=>MN vuông góc BD

=>MN vuông góc MQ

Xét tứ giác MNPQ có

MQ//NP

MQ=NP

góc NMQ=90 độ

=>MNPQ là hình chữ nhật

=>M,N,P,Q cùng nằm trên 1 đường tròn

a: ΔOIK cân tại O

mà OD là đừog cao

nên D là trung điểm của IK

b: Xét ΔFDC vuông tại D và ΔFAE vuông tại A có

góc DFC=góc AFE
=>ΔFDC đồng dạng với ΔFAE

=>FD/FA=FC/FE

=>FD*FE=FC*FA

NM
29 tháng 8 2021

ta có 

\(A=B.\left|x-4\right|\Leftrightarrow\frac{\sqrt{x}+2}{\sqrt{x}-5}=\frac{1}{\sqrt{x}-5}.\left|x-4\right|\Leftrightarrow\sqrt{x}+2=\left|x-4\right|\)

Vậy :

\(\orbr{\begin{cases}\sqrt{x}+2=x-4\\\sqrt{x}+2=-x+4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-\sqrt{x}-6=0\\x+\sqrt{x}-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=3\\\sqrt{x}=1\end{cases}}}\)\(\Leftrightarrow\orbr{\begin{cases}x=9\\x=1\end{cases}}\)

29 tháng 8 2021

bạn cs chắc đây là đáp án đúng chứ