K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2021

\(1,=5x\left(1-4x+4x^2\right)=5x\left(2x-1\right)^2\\ 2,=x\left(x-2y\right)-3\left(x-2y\right)=\left(x-3\right)\left(x-2y\right)\\ 3,=4x^2-\left(y+3\right)^2=\left(2x+y+3\right)\left(2x-y-3\right)\)

25 tháng 12 2021

6: \(=x^3\left(x-2\right)-\left(x-2\right)\)

\(=\left(x-2\right)\left(x-1\right)\left(x^2+x+1\right)\)

7: =(x-4)(x+2)

25 tháng 12 2021

2/

\(2x^3-8x=2x\left(x^2-4\right)=2x\left(x-2\right)\left(x+2\right)\)

3/

\(9x^2-\left(x-1\right)^2=\left(3x\right)^2-\left(x-1\right)^2=\left(3x-x+1\right)\left(3x+x-1\right)\)

4/

\(x^2-3x+6y-4y^2=x^2-4y^2-3x+6y=\left(x^2-4y^2\right)-\left(3x-6y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-3\left(x-2y\right)=\left(x-2y\right)\left(x+2y-3\right)\)

 

 

25 tháng 12 2021

7: =(x-4)(x+2)

4: \(=\left(x-2y\right)\left(x+2y\right)-3\left(x-2y\right)\)

\(=\left(x-2y\right)\left(x+2y-3\right)\)

15 tháng 12 2021

Bài 4:

\(P=\dfrac{4x^2-2x+7}{2x-1}=\dfrac{2x\left(2x-1\right)+7}{2x-1}=2x+\dfrac{7}{2x-1}\in Z\\ \Leftrightarrow2x-1\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\\ \Leftrightarrow x\in\left\{-3;0;1;4\right\}\\ Q=\dfrac{4x^2-2x+3}{2x-1}=\dfrac{2x\left(2x-1\right)+3}{2x-1}=2x+\dfrac{3}{2x-1}\in Z\\ \Leftrightarrow2x-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow x\in\left\{-1;0;1;2\right\}\)

Bài 5:

\(M=\dfrac{\left(5x-1\right)\left(5x+1\right)}{1-5x}+\dfrac{\left(y-3\right)\left(5x+1\right)}{y-3}=-\left(5x+1\right)+5x+1=0\)

Bài 6:

\(VT=\dfrac{a\left(a+3b\right)}{\left(a+3b\right)\left(a-3b\right)}-\dfrac{\left(2a+b\right)\left(a-3b\right)}{\left(a-3b\right)^2}=\dfrac{a}{a-3b}-\dfrac{2a+b}{a-3b}=\dfrac{-a-b}{a-3b}\)

\(VP=\dfrac{\left(a+b\right)\left(a+c\right)}{\left(a+c\right)\left(3b-a\right)}=\dfrac{a+b}{3b-a}=\dfrac{-a-b}{a-3b}\)

Vậy ta đc đpcm

26 tháng 9 2021

\(1,\\ a,\dfrac{8x}{2xy}=\dfrac{4x}{y}\\ b,\dfrac{2xy}{6y}=\dfrac{x}{3}\\ c,\dfrac{3\left(x+2\right)}{2x}=\dfrac{6\left(x+2\right)}{4x}\\ d,\dfrac{4\left(x-2\right)}{3\left(x+1\right)}=\dfrac{8\left(x-2\right)x}{6\left(x+1\right)x}\\ 2,\\ \dfrac{x^2+3x+2}{x^2+x}=\dfrac{x^2+x+2x+2}{x\left(x+1\right)}=\dfrac{\left(x+1\right)\left(x+2\right)}{x\left(x+1\right)}=\dfrac{x+2}{x}\\ 3,\\ \dfrac{x^2-3x}{x^2-9}=\dfrac{x}{x+3}\)

Bài 3: 

Ta có: \(x^2-2x+4=\left(x-1\right)^2+3\ge3\forall x\)

\(\Leftrightarrow P=\dfrac{15}{x^2-2x+4}=\dfrac{15}{\left(x-1\right)^2+3}\le5\forall x\)

Dấu '=' xảy ra khi x=1

26 tháng 9 2021

a) \(\dfrac{A}{x-2}=\dfrac{x^2+3x+2}{x^2-4}\)

\(\Leftrightarrow\dfrac{A}{x-2}=\dfrac{\left(x+2\right)\left(x+1\right)}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow\dfrac{A}{x-2}=\dfrac{x+1}{x-2}\Leftrightarrow A=x+1\)

b) \(\dfrac{M}{x-1}=\dfrac{x^2+3x+2}{x+1}\)

\(\Leftrightarrow\dfrac{M}{x-1}=\dfrac{\left(x+1\right)\left(x+2\right)}{x+1}\)

\(\Leftrightarrow\dfrac{M}{x-1}=x+2\Leftrightarrow M=\left(x-1\right)\left(x+2\right)=x^2+x-2\)

9 tháng 10 2021

\(18,\\ \dfrac{1-9x^2}{x^2+4x}:\dfrac{2-6x}{3x}\left(x\ne0;x\ne-4;x\ne\dfrac{1}{3}\right)\\ =\dfrac{\left(1-3x\right)\left(1+3x\right)}{x\left(x+4\right)}\cdot\dfrac{3x}{2\left(1-3x\right)}=\dfrac{3\left(1+3x\right)}{2\left(x+4\right)}\\ \dfrac{27-x^3}{5x+10}:\dfrac{x-3}{3x+6}\left(x\ne-2;x\ne3\right)=\dfrac{\left(3-x\right)\left(x^2+3x+9\right)}{5\left(x+2\right)}:\dfrac{3\left(x+2\right)}{-\left(3-x\right)}\\ =\dfrac{-3\left(x^2+3x+9\right)}{5}\)

\(19,\\ \dfrac{4x^2}{25y^2}:\dfrac{6x}{5y}:\dfrac{2x}{9y}\left(x,y\ne0\right)=\dfrac{4x^2\cdot5y\cdot9y}{25y^2\cdot6x\cdot2x}=\dfrac{3}{5}\)

16 tháng 10 2021

\(a,P=\left[\dfrac{\left(x-1\right)^2}{x^2+x+1}-\dfrac{1-2x^2+4x}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{1}{x-1}\right]\cdot\dfrac{x\left(x^2+1\right)}{2x}\\ P=\dfrac{x^3-3x^2+3x-1-1+2x^2-4x+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+1}{2}\\ P=\dfrac{x^3-1}{x^3-1}\cdot\dfrac{x^2+1}{2}=\dfrac{x^2+1}{2}\)

\(b,\left(x+1\right)^2\ge0\Leftrightarrow x^2+2x+1\ge0\Leftrightarrow x^2+1\ge2x\\ \Leftrightarrow\dfrac{x^2+1}{2}\ge x\Leftrightarrow P\ge x\)