Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3:
\(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\left(m^2-3m+4\right)\)
\(=\left(2m-2\right)^2-4\left(m^2-3m+4\right)\)
\(=4m^2-16m+4-4m^2+12m-16=-4m-12\)
Để phương trình có hai nghiệm phân biệt thì -4m-12>0
=>-4m>12
hay m<-3
Áp dụng hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m^2-3m+4\end{matrix}\right.\)
Theo đề, ta có: \(x_1+x_2=x_1x_2\)
\(\Leftrightarrow m^2-3m+4-2m+2=0\)
=>(m-2)(m-3)=0
hay \(m\in\varnothing\)
a) \(P=\dfrac{\sqrt{x}+5}{\sqrt{x}-2}=\dfrac{\sqrt{9}+5}{\sqrt{9}-2}=\dfrac{3+5}{3-2}=8\)
b) \(Q=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}-\dfrac{5\sqrt{x}-2}{4-x}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{x-3\sqrt{x}+2+5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
c) \(M=\dfrac{Q}{P}=\dfrac{\sqrt{x}}{\sqrt{x}-2}:\dfrac{\sqrt{x}+5}{\sqrt{x}-2}=\dfrac{\sqrt{x}}{\sqrt{x}-2}.\dfrac{\sqrt{x}-2}{\sqrt{x}+5}=\dfrac{\sqrt{x}}{\sqrt{x}+5}< \dfrac{1}{2}\)
\(\Leftrightarrow2\sqrt{x}< 3\sqrt{x}+15\Leftrightarrow\sqrt{x}>-15\left(đúng\forall x\ge0,x\ne4\right)\)
d) \(M=\dfrac{\sqrt{x}}{\sqrt{x}+5}=1-\dfrac{5}{\sqrt{x}+5}\in Z\)
\(\Rightarrow\sqrt{x}+5\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Do \(x\ge0,x\ne4\)
\(\Rightarrow x\in\left\{0\right\}\)
Bài 2:
a: Xét tứ giác ABOC có
\(\widehat{ABO}+\widehat{ACO}=180^0\)
Do đó: ABOC là tứ giác nội tiếp
=>A,B,O,C cùng thuộc 1 đường tròn(1)
Xét tứ giác OHAC có
\(\widehat{OHA}+\widehat{OCA}=180^0\)
Do đó: OHAC là tứ giác nội tiếp
=>O,H,A,C cùng thuộc 1 đường tròn(2)
Từ (1) và (2) suy ra A,B,H,O,C cùng năm trên 1 đường tròn
b: \(\widehat{BHA}=\widehat{BOA}\)
\(\widehat{CHA}=\widehat{AOC}\)
mà \(\widehat{AOB}=\widehat{AOC}\)
nên \(\widehat{BHA}=\widehat{CHA}\)
hay HA là tia phân giác của góc BHC
Thay x = - 3 ; y = 4 vào hpt trên ta được
\(\left\{{}\begin{matrix}-3m-4=n\\-3n+4m=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n+3m=-4\\-3n+4m=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3n+9m=-12\\-3n+4m=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}13m=-11\\n=-3m-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=-\dfrac{11}{13}\\n=-\dfrac{19}{13}\end{matrix}\right.\)
a: ΔOIK cân tại O
mà OD là đừog cao
nên D là trung điểm của IK
b: Xét ΔFDC vuông tại D và ΔFAE vuông tại A có
góc DFC=góc AFE
=>ΔFDC đồng dạng với ΔFAE
=>FD/FA=FC/FE
=>FD*FE=FC*FA
\(b,\dfrac{\sqrt{12}-\sqrt{6}}{\sqrt{30}-\sqrt{15}}=\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{\sqrt{15}\left(\sqrt{2}-1\right)}=\dfrac{\sqrt{6}}{\sqrt{15}}=\dfrac{\sqrt{2}}{\sqrt{5}}\)
\(d,\dfrac{ab-bc}{\sqrt{ab}-\sqrt{bc}}=\dfrac{\left(\sqrt{ab}-\sqrt{bc}\right)\left(\sqrt{ab}+\sqrt{bc}\right)}{\left(\sqrt{ab}-\sqrt{bc}\right)}=\sqrt{ab}+\sqrt{bc}=\sqrt{b}\left(\sqrt{a}+\sqrt{c}\right)\)
\(e,\left(a\sqrt{\dfrac{a}{b}+2\sqrt{ab}}+b\sqrt{\dfrac{a}{b}}\right)\sqrt{ab}\)
\(=a\left(\sqrt{\dfrac{a}{b}+\dfrac{2b.\sqrt{ab}}{b}}+b\sqrt{\dfrac{a}{b}}\right)\sqrt{ab}\)
\(=a\sqrt{a}\sqrt{a+2b\sqrt{ab}}+b\sqrt{a^2}\)
\(=a\sqrt{a^2+2ab\sqrt{ab}}+ab\)
\(=a\left(\sqrt{a^2+2ab\sqrt{ab}}+b\right)\)
\(f,\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\)
\(=\left(a+\sqrt{a}+1+\sqrt{a}\right)\left(a-\sqrt{a}+1-\sqrt{a}\right)\)
\(=\left(a+2\sqrt{a}+1\right)\left(a-2\sqrt{a}+1\right)\)
\(=\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)^2\)
\(=\left(a-1\right)^2=a^2-2a+1\)