Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Ta có: \(A=25x^4-24x^2-1\)
\(=25x^4-25x^2+x^2-1\)
\(=\left(x^2-1\right)\left(25x^2+1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(25x^2+1\right)\)
2: Ta có: \(A=64x^4+63x^2-1\)
\(=64x^4+64x^2-x^2-1\)
\(=\left(x^2+1\right)\left(64x^2-1\right)\)
\(=\left(x^2+1\right)\left(8x-1\right)\left(8x+1\right)\)
3: Ta có: \(A=x^4-15x^2+50\)
\(=x^4-5x^2-10x^2+50\)
\(=\left(x^2-5\right)\left(x^2-10\right)\)
4: Ta có: \(A=-10x^4+9x^2+1\)
\(=-10x^4+10x^2-x^2+1\)
\(=\left(x^2-1\right)\left(-10x^2-1\right)\)
\(=-\left(10x^2+1\right)\left(x-1\right)\left(x+1\right)\)
a: Xét tứ giác AMCD có
I là trung điểm chung của AC và MD
góc AMC=90 độ
=>AMCD là hình chữ nhật
b: Xét tứ giác ABMD có
AD//BM
AD=BM
=>ABMD là hình bình hành
Bài 1:
a: \(=-10x^3+20x^4-5x\)
b: \(=\dfrac{1}{3}a^2b+7a^5-1\)
c: \(=a^3+8+25-a^3=33\)
d: \(=x^2-16+8-x^3=-x^3+x^2-8\)
e: \(=a^3+1+8-a^3=9\)
f: \(=\dfrac{7-2x+4x-8}{2x+3}=\dfrac{2x-1}{2x+3}\)
g: \(=\dfrac{3}{2\left(x+3\right)}-\dfrac{2}{x\left(x+3\right)}\)
\(=\dfrac{3x-4}{2x\left(x+3\right)}\)
Lời giải:
$y-x^2y-2xy^2-y^3=y(1-x^2-2xy-y^2)$
$=y[1-(x^2+2xy+y^2)]=y[1-(x+y)^2]=y(1-x-y)(1+x+y)$
\(Q_{\left(x\right)}=x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)
\(=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+..+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)
\(=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...+x^3+x^2-x^2-x+x+1\)
\(=1\)
\(a.P(x)=x^7-80x^6+80x^5-80x^4+....+80x+15\)
\(=x^7-79x^6-x^6+79x^5+x^5-79x^4-....-x^2+79x+x+15\)
\(=x^6(x-79)-x^5(x-79)+x^4(x-79)-....-x(x-79)+x+15\)
\(=(x-79)(x^6-x^5+x^4-....-x)+x+15\)
Thay x = 79 vào biểu thức trên , ta có
\(P(79)=(79-79)(79^6-79^5+79^4-...-79)+79+15\)
\(=0+79+15\)
\(=94\)
Vậy \(P(x)=94\)khi x = 79
\(b.Q(x)=x^{14}-10x^{13}+10x^{12}-.....+10x^2-10x+10\)
\(=x^{14}-9x^{13}-x^{13}+9x^{12}+.....-x^3+9x^2+x^2-9x-x+10\)
\(=x^{13}(x-9)-x^{12}(x-9)+.....-x^2(x-9)+x(x-9)-x+10\)
\(=(x-9)(x^{13}-x^{12}+.....-x^2+x)-x+10\)
Thay x = 9 vào biểu thức trên , ta có
\(Q(9)=(9-9)(9^{13}-9^{12}+.....-9^2+9)-9+10\)
\(=0-9+10\)
\(=1\)
Vậy \(Q(x)=1\)khi x = 9
\(c.R(x)=x^4-17x^3+17x^2-17x+20\)
\(=x^4-16x^3-x^3+16x^2+x^2-16x-x+20\)
\(=x^3(x-16)-x^2(x-16)+x(x-16)-x+20\)
\(=(x-16)(x^3-x^2+x)-x+20\)
Thay x = 16 vào biểu thức trên , ta có
\(R(16)=(16-16)(16^3-16^2+16)-16+20\)
\(=0-16+20\)
\(=4\)
Vậy \(R(x)=4\)khi x = 16
\(d.S(x)=x^{10}-13x^9+13x^8-13x^7+.....+13x^2-13x+10\)
\(=x^{10}-12x^9-x^9+12x^8+.....+x^2-12x-x+10\)
\(=x^9(x-12)-x^8(x-12)+....+x(x-12)-x+10\)
\(=(x-12)(x^9-x^8+....+x)-x+10\)
Thay x = 12 vào biểu thức trên , ta có
\(S(12)=(12-12)(12^9-12^8+....+12)-12+10\)
\(=0-12+10\)
\(=-2\)
Vậy \(S(x)=-2\)khi x = 12
Hình như đây là toán lớp 7 có trong phần trắc nghiệm của thi HSG huyện
Chúc bạn học tốt , nhớ kết bạn với mình
\(10,\\ a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\\ \Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2\ge4ab+4ac+4ad+4ae\\ \Leftrightarrow\left(a^2-4ab+4b^2\right)+\left(a^2-4ac+4c^2\right)+\left(a^2-4ad+4d^2\right)+\left(a^2-4ae+4e^2\right)\ge0\\ \Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2\ge0\left(luôn.đúng\right)\)
Dấu \("="\Leftrightarrow\dfrac{a}{2}=b=c=d=e\)
\(4,\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac-\dfrac{1}{4}\left(2a^2+2b^2+2c^2-2ab-2ac-2bc\right)\ge3ab+3bc+3ca\\ \Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac-\dfrac{1}{2}a^2-\dfrac{1}{2}b^2-\dfrac{1}{2}c^2-ab-bc-ac\ge0\\ \Leftrightarrow\dfrac{1}{2}a^2+\dfrac{1}{2}b^2+\dfrac{1}{2}c^2+ab+ac+bc\ge0\\ \Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge0\\ \Leftrightarrow\left(a+b+c\right)^2\ge0\left(luôn.đúng\right)\)
Dấu \("="\Leftrightarrow a+b+c=0\)
a) \(\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}\\\dfrac{y}{5}=\dfrac{z}{7}\Rightarrow\dfrac{y}{15}=\dfrac{z}{21}\end{matrix}\right.\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x+y+z}{10+15+21}=\dfrac{92}{46}=2\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{10}=2\Rightarrow x=2.10=20\\\dfrac{y}{15}=2\Rightarrow y=2.15=30\\\dfrac{z}{21}=2\Rightarrow z=2.21=42\end{matrix}\right.\)