Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^6+x^4-3x^2-4x+6\)
\(=\left(x^6+2x^5+4x^4+6x^3+5x^2\right)-\left(2x^5+4x^4+8x^3+12x^2+10x\right)+\left(x^4+2x^3+4x^2+6x+5\right)+1\)
\(=x^2\left(x^4+2x^3+4x^2+6x+5\right)-2x\left(x^4+2x^3+4x^2+6x+5\right)+\left(x^4+2x^3+4x^2+6x+5\right)+1\)
\(=\left(x^4+2x^3+4x^2+6x+5\right)\left(x^2-2x+1\right)+1\)
\(=\left[\left(x^4+2x^3+x^2\right)+3\left(x^2+2x+1\right)+2\right]\left(x-1\right)^2+1\)
\(=\left[\left(x^2+x\right)^2+3\left(x+1\right)^2+2\right]\left(x-1\right)^2+1\ge1\)
Dấu "=" xảy ra khi \(x=1\)
a) Đặt \(a=x^2+x\)
Đa thức trở thành: \(a^2-14a+24=\left(a^2-14a+49\right)-25=\left(a-7\right)^2-25=\left(a-7-5\right)\left(a-7+5\right)=\left(a-12\right)\left(a-2\right)\)
Thay a:
\(\left(a-12\right)\left(a-2\right)=\left(x^2+x-12\right)\left(x^2+x-2\right)\)
b) Đặt \(a=x^2+x\)
Đa thức trở thành:
\(\left(x^2+x\right)^2+4x^2+4x-12=\left(x^2+x\right)^2+4\left(x^2+x\right)-12=a^2+4a-12=\left(a^2+4x+4\right)-16=\left(a+2\right)^2-16=\left(a+2-4\right)\left(a+2+4\right)=\left(a-2\right)\left(a+6\right)\)
Thay a:
\(\left(a-2\right)\left(a+6\right)=\left(x^2+x-2\right)\left(x^2+x+6\right)\)
\(A=x^7-4x^3+x^2+2=x^3\left(x^4-4\right)+x^2+2\)
\(=x^3\left(x^2-2\right)\left(x^2+2\right)+x^2+2\)
\(=\left(x^2+2\right)\left(x^3\left(x^2-2\right)+1\right)\)
\(=\left(x^2+2\right)\left(x^5-2x^3+1\right)\)
\(=\left(x^2+2\right)\left(x^5-x^4+x^4-x^3-x^3+x^2-x^2+x-x+1\right)\)
\(=\left(x^2+2\right)\left[x^4\left(x-1\right)+x^3\left(x-1\right)-x^2\left(x-1\right)-x\left(x-1\right)-\left(x-1\right)\right]\)
\(=\left(x^2+2\right)\left(x-1\right)\left(x^4+x^3-x^2-x-1\right)\)
\(=ab\left(a-b\right)\left(a+b\right)+c^3\left(a-b\right)-c\left(a^3-b^3\right)\)
\(=\left(a-b\right)\left(a^2b+ab^2\right)+c^3\left(a-b\right)-\left(a-b\right)\left(a^2c+abc+b^2c\right)\)
\(=\left(a-b\right)\left(a^2b+ab^2+c^3-a^2c-abc-b^2c\right)\)
\(=\left(a-b\right)\left[ab\left(a-c\right)+b^2\left(a-c\right)-c\left(a^2-c^2\right)\right]\)
\(=\left(a-b\right)\left[ab\left(a-c\right)+b^2\left(a-c\right)-\left(a-c\right)\left(ac+c^2\right)\right]\)
\(=\left(a-b\right)\left(a-c\right)\left(ab+b^2-ac-c^2\right)\)
\(=\left(a-b\right)\left(a-c\right)\left[a\left(b-c\right)+\left(b-c\right)\left(b+c\right)\right]\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\left(a+b+c\right)\)
d) \(\dfrac{5x+2}{6}\) +\(\dfrac{3-4x}{2}\) = 2-\(\dfrac{x+7}{3}\)
=>5x+2+3(3-4x)=12-2(x+7)
5x+2+9-12x=12-2x-14
-5x=-13
x=\(\dfrac{13}{5}\)
e) \(\dfrac{-20}{9}x +4=\dfrac{8}{3}x-40\)
=>-20x+36=24x-360
-44x=-396
x=9
f) 3x(2x-5)-4X+10=0
6X2 -15X-4X+10=0
2x(3x-2)-5(3x-2)=0
(3x-2)(2x-5)=0
\(\left[\begin{array}{} Biểu thức (3x-2=0)\\ Biểu thức (2x-5=0) \end{array} \right.\)\(\left[\begin{array}{} (x=\dfrac{2}{3})\\ (x=\dfrac{5}{2}) \end{array} \right.\)
j) \(\dfrac{x-45}{55}+\dfrac{x-47}{53}=\dfrac{x-55}{45}+\dfrac{x-53}{47}\)
\(\dfrac{x-45}{55}-1+\dfrac{x-47}{53}-1=\dfrac{x-55}{45}-1+\dfrac{x-53}{47}-1\)
\(\dfrac{x-100}{55}+\dfrac{x-100}{53}=\dfrac{x-100}{45}+\dfrac{x-100}{47}\)
\(\dfrac{x-100}{55}+\dfrac{x-100}{53}-\dfrac{x-100}{45}-\dfrac{x-100}{47}=0\)
(x-100)(\(\dfrac{1}{55}+\dfrac{1}{53}-\dfrac{1}{45}-\dfrac{1}{47}\))=0
=> x-100=0(\(\dfrac{1}{55}+\dfrac{1}{53}-\dfrac{1}{45}-\dfrac{1}{47}\) >0)
=> x= 100
1: Ta có: \(A=25x^4-24x^2-1\)
\(=25x^4-25x^2+x^2-1\)
\(=\left(x^2-1\right)\left(25x^2+1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(25x^2+1\right)\)
2: Ta có: \(A=64x^4+63x^2-1\)
\(=64x^4+64x^2-x^2-1\)
\(=\left(x^2+1\right)\left(64x^2-1\right)\)
\(=\left(x^2+1\right)\left(8x-1\right)\left(8x+1\right)\)
3: Ta có: \(A=x^4-15x^2+50\)
\(=x^4-5x^2-10x^2+50\)
\(=\left(x^2-5\right)\left(x^2-10\right)\)
4: Ta có: \(A=-10x^4+9x^2+1\)
\(=-10x^4+10x^2-x^2+1\)
\(=\left(x^2-1\right)\left(-10x^2-1\right)\)
\(=-\left(10x^2+1\right)\left(x-1\right)\left(x+1\right)\)
24: Ta có: \(A=10ax-5ay+2x-y\)
\(=5a\left(2x-y\right)+\left(2x-y\right)\)
\(=\left(2x-y\right)\left(5a+1\right)\)
25: Ta có: \(A=10ax-5ay-2x+y\)
\(=5a\left(2x-y\right)-\left(2x-y\right)\)
\(=\left(2x-y\right)\left(5a-1\right)\)