Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho biểu thức A = 3/n+2
a)số nguyên n phải thỏa mãn điều kiện gì để A là phân số
Diều kiện: \(n+2\ne0\Leftrightarrow n\ne-2\)
b)tính giá trị của A khi n=3
Thay n=3 vào A ta được;
A=\(\frac{3}{3+2}=\frac{3}{5}\)
c)tìm các số nguyên n để A là một số nguyên
Để A là số nguyên thì: \(3⋮n+2\Leftrightarrow n+2\inƯ\left(3\right)\)
\(\Leftrightarrow n+2\in\left\{-3;-1;1;3\right\}\)
\(\Leftrightarrow n\in\left\{-5;-3;-1;1\right\}\)
Vậy .....
Để A có giá trị nguyên hay A \(\in\)Z thì ( 3 - n ) \(\in\)Ư(4) .
Mà : Ư(4) = { 1 ; 2 ; 4 ; -1 ; - 2 ; -4 }
Nếu : 3 - n = 1 => n = 2
3 - n = 2 => n = 1
3 - n = 4 => n = -1
3 - n = -1 => n = 4
3 - n = -2 => n = 5
3 - n = -4 => n = 7
Vậy : n \(\in\){ 2 ; 1 ; -1 ; 4 ; 5 ; 7 }
B1. Ta có: A= \(\frac{4n-1}{2n+3}+\frac{n}{2n+3}=\frac{4n-1+n}{2n+3}=\frac{5n-1}{2n+3}\)
=> 2A = \(\frac{10n-2}{2n+3}=\frac{5\left(2n+3\right)-17}{2n+3}=5-\frac{17}{2n+3}\)
Để A là số nguyên <=> 2A là số nguyên <=> \(\frac{17}{2n+3}\in Z\)
<=> 17 \(⋮\)2n + 3 <=> 2n + 3 \(\in\)Ư(17) = {1; -1; 17; -17}
Lập bảng:
2n + 3 | 1 | -1 | 17 | -17 |
n | -1 | -2 | 7 | -10 |
Vậy ....
Bài 2:
Gọi d là ƯCLN (7n-1; 6n-1) (d thuộc N*)
\(\Rightarrow\hept{\begin{cases}7n-1⋮d\\6n-1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(7n-1\right)⋮d\\7\left(6n-1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n-6⋮d\\42n-7⋮d\end{cases}}}\)
=> 42n-7-42n+6 chia hết cho d
=> -1 chia hết cho d
mà d thuộc N* => d=1
=> ƯCLN (7n-1; 6n-1)=1
=> đpcm
a, \(M=\left(x-2\right)^2-22\)
Có: \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-2\right)^2-22\ge-22\forall x\)
hay GTNN của M là -22
Dấu "=" xảy ra tại \(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy GTNN của M là -22 tại x=2.
b, \(N=9-|x+3|\)
Có: \(|x+3|\ge0\forall x\)
\(\Rightarrow9-|x+3|\le9\forall x\)
hay GTLN của N là 9
Dấu "=" xảy ra tại \(|x+3|=0\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
Vậy GTLN của N là 9 tại x = -3.
\(\left(a+b\right)_{max}=a_{max}+b_{max}=9999+9999=19998\\ \left(a+b\right)_{min}=a_{min}+b_{min}=-9999-9999=-19998\)
\(A=\frac{2n-1}{n-2}=\frac{2\left(n-2\right)+3}{n-2}=\frac{2\left(n-2\right)}{n-2}+\frac{3}{n-2}=2+\frac{3}{n-2}\)
Để A là số nguyên thì \(\frac{3}{n-2}\) phải là số nguyên
Hay: 3 ⋮ n - 2
=> n - 2 ∈ Ư (3)
=> n - 2 ∈ {1; -1; 3; -3}
=> n ∈ {3; 1; 5; -1}
P/s: Ko chắc nhé e :)
em cảm ơn chị