Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{b}-1=\dfrac{c}{d}-1\Rightarrow\dfrac{a-b}{b}=\dfrac{c-d}{d}\)
\(\Rightarrow\dfrac{b}{a-b}=\dfrac{d}{c-d}\Rightarrow\dfrac{2b}{a-b}=\dfrac{2d}{c-d}\)
\(\Rightarrow\dfrac{2b}{a-b}+1=\dfrac{2d}{c-d}+1\)
\(\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\) (đpcm)
a, Kẻ Bx//Aa//Cb
\(\Rightarrow\widehat{ABx}=\widehat{BAa}=65^0;\widehat{CBx}=\widehat{BCb}=35^0\left(so.le.trong\right)\\ \Rightarrow\widehat{ABC}=\widehat{ABx}+\widehat{CBx}=65^0+35^0=100^0\)
b, Vì At là p/g góc BAa nên \(\widehat{DAa}=\dfrac{1}{2}\widehat{BAa}=32,5^0\)
Vì Aa//Cb nên \(\widehat{DAa}+\widehat{ADb}=180^0\left(trong.cùng.phía\right)\)
\(\Rightarrow\widehat{ADb}=180^0-32,5^0=147,5^0\)
a, Do MN ⊥ Ax , MN ⊥ Cy => Ax // Cy ( từ vuông góc đến song song)
b, Kẻ Bz // AB // Cy
Do Ax // Bz \(\Rightarrow\widehat{A}=\widehat{B_1}=40^o\)(2 góc so le trong)
Do Bz // Cy \(\Rightarrow\widehat{B_2}=\widehat{C}=50^o\)
Ta thấy: \(\widehat{ABC}=\widehat{B_1}+\widehat{B_2}=40^o+50^o=90^ohayAB\perp BC\left(dpcm\right)\)
Từ \(\frac{x}{2}=\frac{y}{3}=\frac{x}{2}.\frac{1}{2}=\frac{y}{3}.\frac{1}{2}\)\(\Rightarrow\)\(\frac{x}{4}=\frac{y}{6}\)( 1 )
Từ \(\frac{y}{2}=\frac{z}{5}=\frac{y}{2}.\frac{1}{3}=\frac{z}{5}.\frac{1}{3}\)\(\Rightarrow\)\(\frac{y}{6}=\frac{z}{15}\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra : \(\frac{x}{4}=\frac{y}{6}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}=\frac{y}{6}=\frac{z}{15}=\frac{x}{4}=\frac{3y}{18}=\frac{5z}{75}=\frac{x+3y-5z}{4+18-75}=\frac{-106}{-53}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{4}=2\\\frac{y}{6}=2\\\frac{z}{15}=2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=8\\y=12\\z=30\end{cases}}\)
\(\frac{x}{2}\)=\(\frac{y}{3}\)⇒\(\frac{x}{4}\)=\(\frac{y}{6}\)
\(\frac{y}{2}\)=\(\frac{z}{5}\)⇒\(\frac{y}{6}\)=\(\frac{z}{15}\)
⇒\(\frac{x}{4}\)=\(\frac{y}{6}\)=\(\frac{z}{15}\)=\(\frac{x+3y-5z}{4+18-75}\)=\(\frac{106}{-53}\)=2
⇒x=8,y=12,z=30
Nhớ chọn mình nha
a, Giả sử: Cz // Ax // By
Do Cz // Ax \(\Rightarrow\widehat{A}+\widehat{C_1}=180^o\)(2 góc TCP)
\(\Rightarrow80^o+\widehat{C_1}=180^o\)
\(\Rightarrow\widehat{C_1}=180^o-80^o=100^o\)
Do Cz // By \(\Rightarrow\widehat{C_2}=\widehat{B}=35^o\)(2 góc so le trong)
Ta thấy: \(\widehat{ACB}=\widehat{C_1}+\widehat{C_2}=100^o+35^o=135^o\)
b, Do d // AC \(\Rightarrow\widehat{ACB}+\widehat{EBC}=180^o\)(2 góc TCP)
\(\Rightarrow135^o+\widehat{EBC}=180^o\)
\(\Rightarrow\widehat{EBC}=180^o-135^o=45^o\)