Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)\(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2017}{2018}\)
\(B=\dfrac{1}{2018}\)
2)a)\(x^2-2x-15=0\)
\(\Leftrightarrow x^2-2x+1-16=0\)
\(\Leftrightarrow\left(x-1\right)^2-16=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)
3)\(\dfrac{a}{b}=\dfrac{d}{c}\)
\(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{d^2}{c^2}=\dfrac{a}{b}\cdot\dfrac{d}{c}=\dfrac{ad}{bc}\)
Lại có:\(\dfrac{a^2}{b^2}=\dfrac{d^2}{c^2}=\dfrac{a^2+d^2}{b^2+c^2}\)
\(\Rightarrow\dfrac{a^2+d^2}{b^2+c^2}=\dfrac{ad}{bc}\)
4)Ta có:\(g\left(x\right)=-x^{101}+x^{100}-x^{99}+...+x^2-x+1\)
\(g\left(x\right)=-x^{101}+\left(x^{100}-x^{99}+...+x^2-x+1\right)\)
\(g\left(x\right)=-x^{101}+f\left(x\right)\)
\(\Rightarrow f\left(x\right)-g\left(x\right)=f\left(x\right)+x^{101}-f\left(x\right)=x^{101}\)
Tại x=0 thì f(x)-g(x)=0
Tại x=1 thì f(x)-g(x)=1
\(2^x=2^{3\left(y+1\right)}\Rightarrow x=3y+3\)
\(3^{2y}\Rightarrow3^{x-9}\Rightarrow2y=x-9\Rightarrow x=2y+9\)
\(\Rightarrow3y+3=2y+9\Rightarrow y=6\Rightarrow x=21\Rightarrow x+y=27\)
Ta có:\(2^x=8^{y+1}\Rightarrow2^x=2^{3\left(y+1\right)}\Rightarrow2^x=2^{3y+3}\Rightarrow x=3y+3\)
\(\Rightarrow9^y=3^{x-9}\Rightarrow3^{2y}=3^{3y+3-9}\Rightarrow3^{2y}=3^{3y-6}\Rightarrow2y=3y-6\)
\(\Rightarrow2y-3y=-6\Rightarrow-y=-6\Rightarrow y=6\)
\(\Rightarrow x=6\cdot3+3=21\)
\(\Rightarrow x+y=21+6=27\)
\(1,\Leftrightarrow\left[{}\begin{matrix}2x-1=5\\1-2x=5\end{matrix}\right.\Leftrightarrow D\\ 2,\Leftrightarrow\left(-3\right)^x=-27\cdot81=-2187=\left(-3\right)^7\\ \Leftrightarrow x=7\left(A\right)\)
3a) A=\(\dfrac{5}{x+xy+xyz}+\dfrac{5}{y+yz+1}+\dfrac{5xyz}{z+xz+xyz}\)
=\(\dfrac{5}{x\left(1+y+yz\right)}+\dfrac{5}{y+yz+1}+\dfrac{5xy}{1+x+xy}\)
=\(\dfrac{5}{x\left(1+y+zy\right)}+\dfrac{5x}{x\left(1+zy+y\right)}+\dfrac{5xy}{x\left(1+y+zy\right)}\)
=\(\dfrac{5+5x+5xy}{x\left(1+yz+y\right)}\)
=\(\dfrac{5x\left(yz+1+y\right)}{x\left(1+yz+y\right)}=5\)
C1: \(\left(x-1\right)^2=5^4=625\)
\(\Rightarrow\left[{}\begin{matrix}x-1=25\\x-1=-25\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=26\\x=-24\end{matrix}\right.\) => Chọn C
C2: \(\left(4x^2-9\right)\left(2^{x-1}-1\right)=0\)
\(\Rightarrow\left(2x-3\right)\left(2x+3\right)\left(2^{x-1}-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\\x-1=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\\x=1\end{matrix}\right.\) => Chọn A
C3: \(3^x=9^3.27^5\)
\(\Rightarrow3^x=3^6.3^{15}=3^{21}\Rightarrow x=21\) => Chọn B
Cảm ơn bn !!!