Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
khuyến cáo ko nên gạt xuống.
Đồ ngu đồ ăn hại cút mịa mài đê :D
a) Xét tam giác ABE và tam giác ACE có:
+ AE chung.
+ AB = AC (gt).
+ BE = CE (E là trung điểm của BC).
=> Tam giác ABE = Tam giác ACE (c - c - c).
b) Xét tam giác ABC có: AB = AC (gt).
=> Tam giác ABC cân tại A.
Mà AE là đường trung tuyến (E là trung điểm của BC).
=> AE là phân giác ^BAC (Tính chất các đường trong tam giác cân).
c) Xét tam giác ABC cân tại A có:
AE là phân giác ^BAC (cmt).
=> AE là đường cao (Tính chất các đường trong tam giác cân).
=> AE \(\perp\) BC.
Xét tam giác BIE và tam giác CIE:
+ IE chung.
+ BE = CE (E là trung điểm của BC).
+ ^BEI = ^CEI ( = 90o).
=> Tam giác BIE = Tam giác CIE (c - g - c).
c. \(\left|\dfrac{8}{4}-\left|x-\dfrac{1}{4}\right|\right|-\dfrac{1}{2}=\dfrac{3}{4}\)
\(\Rightarrow\left[{}\begin{matrix}\left|\dfrac{8}{4}-x+\dfrac{1}{4}\right|-\dfrac{1}{2}=\dfrac{3}{4}\\\left|\dfrac{8}{4}+x-\dfrac{1}{4}\right|-\dfrac{1}{2}=\dfrac{3}{4}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left|\dfrac{9}{4}-x\right|-\dfrac{1}{2}=\dfrac{3}{4}\\\left|\dfrac{7}{4}+x\right|-\dfrac{1}{2}=\dfrac{3}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}\dfrac{9}{4}-x-\dfrac{1}{2}=\dfrac{3}{4}\\x=\dfrac{9}{4}-\dfrac{1}{2}=\dfrac{3}{4}\end{matrix}\right.\\\left[{}\begin{matrix}\dfrac{7}{4}+x-\dfrac{1}{2}=\dfrac{3}{4}\\-\dfrac{7}{4}-x-\dfrac{1}{2}=\dfrac{3}{4}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=1\\x=\dfrac{7}{2}\end{matrix}\right.\\\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-3\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{7}{2}\\x=-3\end{matrix}\right.\)
Ở nơi x=9/4-1/2 là x-9/4-1/2 nha
a. -1,5 + 2x = 2,5
<=> 2x = 2,5 + 1,5
<=> 2x = 4
<=> x = 2
b. \(\dfrac{3}{2}\left(x+5\right)-\dfrac{1}{2}=\dfrac{4}{3}\)
<=> \(\dfrac{3}{2}x+\dfrac{15}{2}-\dfrac{1}{2}=\dfrac{4}{3}\)
<=> \(\dfrac{9x}{6}+\dfrac{45}{6}-\dfrac{3}{6}=\dfrac{8}{6}\)
<=> 9x + 45 - 3 = 8
<=> 9x = 8 + 3 - 45
<=> 9x = -34
<=> x = \(\dfrac{-34}{9}\)
\(\left(x+2\right)\left(x-3\right)\left(x-6\right)< 0\)
Suy ra phải có ít nhất 1 số âm
Lại có: \(x-6< x-3< x+2\)
nên \(\hept{\begin{cases}x-6< 0\\x-3>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 6\\x>3\end{cases}}\Leftrightarrow3< x< 6\)
a, |x-2|+x
TH1: |x-2|=x-2
=> |x-2|+x=x-2+x=2x-2
TH2: |x-2|=-(x-2)= -x+2
=> |x-2|+x= -x+2+x=2
Bài 5:
\(A=2A-A=2^2+2^3+...+2^{107}-2-2^2-...-2^{2016}=2^{107}-2\)
\(2\left(A+2\right)=2^{2x}\\ \Rightarrow2\left(2^{107}-2+2\right)=2^{2x}\\ \Rightarrow2^{108}=2^{2x}\\ \Rightarrow2x=108\\ \Rightarrow x=54\)
Bài 3:
Gọi số học sinh lớp 7A, 7B lần lượt là a,b
Ta có: \(\left\{{}\begin{matrix}\dfrac{x}{8}=\dfrac{y}{9}\\y-x=5\end{matrix}\right.\)
Áp dụng TCDTSBN ta có:
\(\dfrac{x}{8}=\dfrac{y}{9}=\dfrac{y-x}{9-1}=\dfrac{5}{1}=5\)
\(\dfrac{x}{8}=5\Rightarrow x=40\\ \dfrac{y}{9}=5\Rightarrow y=45\)
Vậy số học sinh lớp 7A, 7B lần lượt là 40, 45 học sinh
2x = 8y + 1
2x luôn có chữ số tận cùng là 2 ; 4 ; 8 ; 6
8y + 1 = 2x nên 8y phải có chữ số tận cùng là 1 ; 3 ; 7 ; 5
Nhưng 8y chỉ có thể có tận cùng là 8 ; 4 ; 2 ; 6
Vậy không tồn tại bất kì giá trị x;y nào thỏa mãn .
\(\left(x+2021\right)\left(\dfrac{1}{2}-x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-2021\\x=\dfrac{1}{2}\end{matrix}\right.\)