Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tọa độ I là nghiệm của hệ pt: \(\left\{{}\begin{matrix}y=4x+7\\y=1-2x\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}0=6x+6\\y=1-2x\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1-2\left(-1\right)=3\end{matrix}\right.\)
\(\Rightarrow\) I(-1;3)
\(I\in\left(d3\right)\Rightarrow3=\left(m+1\right)\left(-1\right)+2m-1\)
\(\Leftrightarrow m=5\)
Vậy....
pạn nao bit thì giúp dùm mik ik mih dag cần gấp, THANH YOU VERY MUCH!!!!!
1. dong qui la 3 dg thg do co chung 1 diem,tuc la 3 pt tren co cung 1 nghiem,ta co:
x+1 = -x+3= -2x+4
=> x =1 ; y =2 vây 3 dg thg này dong qui tai 1 diem (1;2)
2. tuong tu nhe
ĐKXĐ: \(m\ne1\)
Gọi \(\left(d'\right):y+2x-3=0\)
\(\Leftrightarrow\left(d'\right):y=-2x+3\)
Để \(\left(d\right)\perp\left(d'\right)\) thì: \(\left(m-1\right).\left(-2\right)=-1\)
\(\Leftrightarrow-2m+2=-1\)
\(\Leftrightarrow-2m=-3\)
\(\Leftrightarrow m=\dfrac{3}{2}\) (nhận)
\(\Rightarrow\left(d\right):y=\dfrac{1}{2}x+n+2\)
Thay tọa độ điểm A(2; 4) vào (d) ta được:
\(4=\dfrac{1}{2}.2+n+2\)
\(\Leftrightarrow1+n+2=4\)
\(\Leftrightarrow n=4-1-2\)
\(\Leftrightarrow n=1\)
Vậy \(m=\dfrac{3}{2};n=1\)
bài này dễ mà bạn :
\(d_1,d_2\)cắt nhau tại diểm có tung độ là 3 nên hoành độ của giao điểm là :
(thay \(y=3\)vào \(d_1\)) \(3=-2x+1\Leftrightarrow-2x=2\Leftrightarrow x=-1\)Tọa độ của giao điểm cũng thỏa mãn phương trình \(d_2\)nên: \(3=-\left(2m-3\right)+3-m\Leftrightarrow-3m=-3\)\(\Leftrightarrow m=1\)
ta có : \(\left(d_1\right)\cap\left(d_2\right)\) \(\Leftrightarrow2x+5=-4x+1\Leftrightarrow x=\dfrac{-2}{3}\Rightarrow y=\dfrac{11}{3}\)
\(\Rightarrow\left(d_1\right)\cap\left(d_2\right)\) tại \(I\left(\dfrac{-2}{3};\dfrac{11}{3}\right)\)
để \(d_3\) đi qua điểm \(I\) thì : \(\dfrac{11}{3}=\dfrac{-2}{3}\left(m+1\right)+2m-1\) \(\Leftrightarrow m=4\)
vậy \(m=4\)
Gọi tọa độ của điểm I là \(\left(x_o;y_o\right)\)
Do \(d_1\cap d_2=I\)
\(\Rightarrow2x_o+5=-4x_o+1\\ \Rightarrow6x_o=-4\\ \Rightarrow x_o=-\dfrac{2}{3}\\ \Rightarrow y_o=2\cdot\left(-\dfrac{2}{3}\right)+5=\dfrac{11}{3}\\ \Rightarrow I\left(-\dfrac{2}{3};\dfrac{11}{3}\right)\)
\(\Rightarrow\) Để \(d_3\) đi qua I
thì \(\Rightarrow-\dfrac{2}{3}\left(m+1\right)+2m-1=\dfrac{11}{3}\)
\(\Rightarrow-\dfrac{2}{3}m-\dfrac{2}{3}+2m-1=\dfrac{11}{3}\\ \Rightarrow\dfrac{4}{3}m=\dfrac{16}{3}\\ \Rightarrow m=4\)
Vậy........