K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(a,\frac{x^2+2.x.5+5^2+x^2-2.x.5+5^2}{x^2+25}\)

\(=\frac{2\left(x^2+25\right)}{x^2+25}=2\)

Vậy giá trị biểu thức không phụ thuộc vào x

\(b,\frac{4x^2+20x+25+25x^2-20x+4}{x^2+1}\)

\(=\frac{29\left(x^2+1\right)}{x^2+1}=29\)

Vậy gt biểu thức không phụ thuộc vào x

16 tháng 7 2018

a)  \(\frac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}\)

   \(=\frac{x^2+10x+25+x^2-10x+25}{x^2+25}\)

   \(=\frac{2\left(x^2+25\right)}{x^2+25}=2\)

\(\Rightarrow\)đpcm

b)  \(\frac{\left(2x+5\right)^2+\left(5x-2\right)^2}{x^2+1}\)

\(=\frac{4x^2+20x+25+25x^2-20x+4}{x^2+1}\)

\(=\frac{29\left(x^2+1\right)}{x^2+1}=29\)

\(\Rightarrow\)đpcm

21 tháng 6 2016

\(\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)\)

\(=\left(4x\right)^3-3.\left(4x\right)^2.1+3.4x.1^2-1^3-\left(4x-3\right)\left(16x^2+3\right)\)

\(=64x^3-48x^2+12x-1-64x^3-12x-48x^2-9\)

\(=9\)

Vì kết quả là hằng số nên biểu thức trên không phụ thuộc vào x

21 tháng 6 2016

b, \(=\frac{x^2+2.5.x+25+x^2-2.x.5+25}{x^2+25}\)

\(=\frac{2x^2+50}{x^2+25}=\frac{2\left(x^2+50\right)}{x^2+50}=2\)

 

 

19 tháng 12 2018

\(P=\left(\frac{x}{x^2-25}-\frac{x-5}{x^2+5x}\right):\frac{2x-5}{x^2+5x}+\frac{x}{5-x}\)

\(P=\left[\frac{x}{\left(x-5\right)\left(x+5\right)}-\frac{x-5}{x\left(x+5\right)}\right]:\frac{2x-5}{x\left(x+5\right)}+\frac{x}{5-x}\)

\(P=\frac{x^2-\left(x-5\right)\left(x-5\right)}{\left(x-5\right)\left(x+5\right)x}.\frac{x\left(x+5\right)}{2x-5}+\frac{x}{5-x}\)

\(P=\frac{x^2-x^2+10x-25}{x\left(x-5\right)\left(x+5\right)}.\frac{x\left(x+5\right)}{2x-5}+\frac{x}{5-x}\)

\(P=\frac{10x-25}{x\left(x-5\right)\left(x+5\right)}.\frac{x\left(x+5\right)}{2x-5}+\frac{x}{5-x}\)

\(P=\frac{5\left(2x-5\right).x\left(x+5\right)}{x\left(x-5\right)\left(x+5\right)\left(2x-5\right)}+\frac{x}{5-x}\)

\(P=\frac{5}{x-5}+\frac{x}{5-x}\)

\(P=\frac{5}{x-5}-\frac{x}{x-5}\)

\(P=\frac{5-x}{x-5}\)

\(P=\frac{-\left(x-5\right)}{x-5}\)

\(P=-1\)

=> Giá trị của biểu thức P không phụ thuộc vào biến

                                                   đpcm

11 tháng 10 2020

Bài 1:

\(\left(x-y+z\right)^2+\left(z-y\right)^2+\left(x-y+z\right)\left(2y-2z\right)\)

\(=\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2\)

\(=\left(x-y+z+y-z\right)^2\)

\(=x^2\)

Bài 2:

đk: \(x\ne\left\{0;-1;-2;-3;-4;-5\right\}\)

Xét BT trái ta có:

\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+4\right)\left(x+5\right)}\)

\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+4}-\frac{1}{x+5}\)

\(=\frac{1}{x}-\frac{1}{x+5}\)

\(=\frac{5}{x\left(x+5\right)}=\frac{5}{x^2+5x}\)

GT của biểu thức lớn sẽ là: \(\frac{5}{x^2+5x}\cdot\frac{x^2+5x}{5}=1\) không phụ thuộc vào biến

=> đpcm

11 tháng 10 2020

Bài 1.

( x - y + z ) + ( z - y )2 + ( x - y + z )( 2y - 2z )

= ( x - y + z ) - 2( x - y + z )( z - y ) + ( z - y )2

= [ ( x - y + z ) - ( z - y ) ]2 

= ( x - y + z - z + y )2

= x2

Bài 2. ĐKXĐ tự ghi nhé :))

\(\left(\frac{1}{x^2+x}+\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}\right)\times\left(\frac{x^2+5x}{5}\right)\)

\(=\left(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}\right)\times\left(\frac{x\left(x+5\right)}{5}\right)\)

\(=\left(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+4}-\frac{1}{x+5}\right)\times\left(\frac{x\left(x+5\right)}{5}\right)\)

\(=\left(\frac{1}{x}-\frac{1}{x+5}\right)\times\frac{x\left(x+5\right)}{5}\)

\(=\left(\frac{x+5}{x\left(x+5\right)}-\frac{x}{\left(x+5\right)}\right)\times\frac{x\left(x+5\right)}{5}\)

\(=\frac{x+5-x}{x\left(x+5\right)}\times\frac{x\left(x+5\right)}{5}\)

\(=\frac{5}{x\left(x+5\right)}\times\frac{x\left(x+5\right)}{5}=1\)

=> đpcm

15 tháng 12 2018

\(a.ĐKXĐ:\hept{\begin{cases}1-3x\ne0\\3x+1\ne0\\x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{3}\\...\\x\ge0\end{cases}}}\)

15 tháng 12 2018

\(b,M=\left(\frac{3x}{1-3x}+\frac{2x}{3x+1}\right):\frac{6x^2+10}{1-6x+9x^2}\)

\(=\left(\frac{3x\left(1+3x\right)}{\left(1-3x\right)\left(1+3x\right)}+\frac{2x\left(1-3x\right)}{\left(1-3x\right)\left(1+3x\right)}\right).\frac{\left(1-3x\right)^2}{6x^2+10}\)

\(=\left(\frac{3x+9x^2+2x-6x^2}{\left(1-3x\right)\left(1+3x\right)}\right).\frac{\left(1-3x\right)^2}{6x^2+10}\)

\(=\frac{5x+3x^2}{1+3x}.\frac{1-3x}{2\left(3x^2+5\right)}\)

==>Sai đề không mem

19 tháng 7 2020

a) ( 4x - 1 )3 - ( 4x - 3 )( 16x2 + 3 )

= 64x3 - 48x2 + 12x - 1 - ( 64x3 + 12x - 48x2 - 9 ) ( chỗ này bạn chịu khó nháp nhé )

= 64x3 - 48x2 + 12x - 1 - 64x3 - 12x + 48x2 + 9

= -1 + 9 = 8 

Vậy biểu thức không phụ thuộc vào x ( đpcm )

b) ( x + 1 )3 - ( x - 1 )3 - 6( x + 1 )( x - 1 )

= x3 + 3x2 + 3x + 1 - ( x3 - 3x2 + 3x - 1 ) - 6x2 + 6

= x3 + 3x2 + 3x + 1 - x3 + 3x2 - 3x + 1 - 6x2 + 6

= 1 + 1 + 6 = 8

Vậy biểu thức không phụ thuộc vào x ( đpcm )

c) \(\frac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}\)

\(=\frac{x^2+10x+25+x^2-10x+25}{x^2+25}\)

\(=\frac{2x^2+50}{x^2+25}\)

\(=\frac{2\left(x^2+25\right)}{x^2+25}=2\)

Vậy biểu thức không phụ thuộc vào x ( đpcm )

19 tháng 7 2020

a, \(\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)\)

\(=64x^3-32x^2+4x-16x^2+8x-1-64x^3-12x+48x^2+9\)

\(=8\)

Vậy biểu thức thức không phụ thuộc vào biến x 

b, \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x+1\right)\left(x-1\right)\)

\(=x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+6\)

\(=8\)

Vậy biểu thức không phụ thuộc vào biến x 

c, \(\frac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}=\frac{x^2+10x+25+x^2-10x+25}{x^2+25}\)

\(=\frac{2x^2+50}{x^2+25}=\frac{2\left(x^2+25\right)}{x^2+25}=2\)

Vậy biểu thức không phụ thuộc vào biến x 

Bạn xem lại đề bài b nhé.

undefined

30 tháng 7 2021

a) \(2\left(x^3+y^3\right)-3\left(x^2+y^2\right)\)

\(=2\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]-3\left[\left(x+y\right)^2-2xy\right]\)

\(=2\left(1-3xy\right)-3\left(1-2xy\right)\)

\(=2-6xy-3+6xy=-1\)

\(\Rightarrow\) Giá trị của biểu thức không phụ thuộc vào biến \(x,y\)

b) \(\dfrac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}\)

 \(=\dfrac{x^2+10x+25+x^2-10x+25}{x^2+25}\)

\(=\dfrac{2x^2+50}{x^2+25}=\dfrac{2\left(x^2+25\right)}{x^2+25}=2\)

\(\Rightarrow\) Giá trị của biểu thức không phụ thuộc vào biến \(x\)

 

7 tháng 1 2022

\(\frac{\left(x+y\right)^2}{x}.\left(\frac{x}{\left(x+y\right)^2}-\frac{x}{x^2-y^2}\right)-\frac{5x-3y}{y-x}\left(đk:x\text{≠}0-y;y\right).\)

\(=\frac{\left(x+y\right)^2}{x}.\left(\frac{x}{\left(x+y\right)^2}-\frac{x}{\left(x-y\right)\left(x+y\right)}\right)-\frac{5x-3y}{y-x}\)

\(=\frac{\left(x+y\right)^2}{x}.\frac{x\left(x-y\right)-x\left(x+y\right)}{\left(x+y\right)^2\left(x-y\right)}+\frac{5x-3y}{x-y}\)

\(=\frac{1}{x}.\frac{x^2-xy-x^2-xy}{\left(x+y\right)^2\left(x-y\right)}+\frac{5x-3y}{x-y}\)

\(=\frac{1}{x}.\frac{-2xy}{x-y}+\frac{5x-3y}{x-y}\)

\(=\frac{-2y}{x-y}+\frac{5x-3y}{x-y}\)

\(=\frac{-2xy+5x-3y}{x-y}\)

\(=\frac{5\left(x-y\right)}{x-y}\)

\(=5\)

Ta có đpcm