K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2023

P(x) = 7x + 3x - 1 \(⋮9\)

Với x = 3k + 1 (k \(\inℕ^∗\))

= 73k + 1 + 33k + 1 - 1

= 343k.3 + 27k.3 - 1 

= (343k.3 - 3) + 27k.3 + 2

= 3(343k - 1) + 27k.3 + 2 

= 3(343 - 1)(343k - 1 + 343k - 2 + ... + 343 + 1) + 27k.3 + 2 

= 3.342(343k - 1 + 343k - 2 + ... + 343 + 1) + 27k.3 + 2 

=> P(x) : 9 dư 2

Với x = 3k + 2  

P(x) = 73k + 2 + 33k + 2 - 1

= 343k.49 + 27k.9 - 1 

= (343k.49 - 49) + 27k.9 + 48

= 49(343k - 1) + 27k.9 + 48

= 49(343 - 1)(343k - 1 + 343k - 2 + ... + 343 + 1) + 27k.9 + 45 + 3

=> P(x) : 9 dư 3

Với x = 3k 

Khi đó P(x) = 73k + 33k - 1

= (343k - 1) + 27k

= (343 - 1)(343k - 1 + 343k - 2 + ... + 343 + 1) + 27k

= 342(343k - 1 + 343k - 2 + ... + 343 + 1) + 27k \(⋮9\)

Vậy P(x) \(⋮\Leftrightarrow x⋮3\)

5 tháng 3 2020

10 \(⋮\)2n+1

=> 2n+1 \(\in\)Ư(10) ={ 1;2; 5; 10}

Vì 2n+1 là số lẻ nên 2n+1 \(\in\){ 1; 5}

=> 2n \(\in\){ 0; 4}

=> n \(\in\){ 0; 2}

Vậy...

b) 3n +1 \(⋮\)n-2

=> n-2 \(⋮\)n-2

=> (3n+1) -(n-2) \(⋮\)n-2

=> (3n-1) -3(n-2) \(⋮\)n-2

=> 3n-1 - 3n + 6 \(⋮\)n-2

=> 5\(⋮\)n-2

=> n-2 thuốc Ư(5) ={ 1;5}

=> n thuộc { 3; 7}

Vậy...

5 tháng 3 2020

a) Vì n thuộc Z => 2n-1 thuộc Z

=> 2n-1 thuộc Ư (10)={-10;-5;-2;-1;1;2;5;10}

Ta có bảng giá trị

2n-1-10-5-2-112510
2n-9-4-1023611
n\(\frac{-9}{2}\)-2\(\frac{-1}{2}\)01\(\frac{3}{2}\)3\(\frac{11}{2}\)

Vậy n={-2;0;3}

b) Ta có 3n+1=3(n-2)+7

Để 3n+1 chia hết cho n-2 thì 3(n-2)+7 chia hết cho n-2

Vì 3(n-2) chia hết cho n-2 => 7 chia hết cho n-2

n thuộc Z => n-2 thuộc Z

=> n-2 thuộc Ư (7)={-1;-7;1;7}

Ta có bảng

n-2-1-717
n1-539

Vậy n={1;-5;3;9}

a) 24n + 1 + 3 = 24n . 2 + 3 = (...6) . 2 + 3 = (....2) + 3 = (....5) ⋮ 5

b) 24n + 2 + 1 = 24n . 2+ 1 = (...6) . 4 + 1 = (...4) + 1 = (....5) ⋮ 5

c) 92n+1   + 1 = 92n . 9 + 1 = (...1) . 9 + 1 = (....9) + 1 = (....0) ⋮ 10

Hok tốt vui

15 tháng 10 2015

b;

bạn thử từng trường hợp đầu tiên là chia hết cho 2 thì n=2k và 2k+1.

.......................................................................3......n=3k và 3k + 1 và 3k+2

c;

bạn phân tích 2 số ra rồi trừ đi thì nó sẽ chia hết cho 9

d;tương tự b

e;g;tương tự a

28 tháng 11 2015

n2 + n  + 1 = n(n+1) + 1

Ta có n(n+1) là tích của 2 số tự nhiên liên tiếp

Nên n(n+1) không có tận cùng là 4 hoặc 9 

=> n(N+1) + 1 không có ận cùng là 5 hoặc 0 

Vậy n2 + n + 1 không chia hết cho 15 (dpcm)

12 tháng 9 2021

\(B=2+2^2+2^3+2^4+...+2^{99}+2^{100}=2\left(1+2^2+2^3+2^4\right)+...+2^{96}\left(1+2^2+2^3+2^4\right)=2.31+2^6.31+...+2^{96}.31=31\left(2+2^6+...+2^{96}\right)⋮31\)

Cảm ơn bạn/chị nhé ạ!!!Thankyou very much!!!