Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm giá trị nhỏ nhất của biểu thức biết : N=|x+2020|-5, với x thuộc Z
mik cần gấp
giải nhanh giúp mik
\(N=\left|x+2020\right|-5\)
Ta có : \(\left|x+2020\right|\ge0\Rightarrow N\ge-5\)
Dấu "=" xảy ra \(\Leftrightarrow\left|x+2020\right|=0\Leftrightarrow x+2020=0\Leftrightarrow x=-2020\)
Vậy \(N_{min}=-5\Leftrightarrow x=-2020\)
a: Ta có: \(-\left(x+5\right)^2\le0\forall x\)
\(\Leftrightarrow-\left(x+5\right)^2+2021\le2021\forall x\)
Dấu '=' xảy ra khi x=-5
a) Ta có: \(\left|x-2\right|\ge0\forall x\)
\(\Leftrightarrow\left|x-2\right|+15\ge15\forall x\)
Dấu '=' xảy ra khi x=2
b) Ta có: \(\left|x-5\right|\ge0\forall x\)
\(\Leftrightarrow2\left|x-5\right|\ge0\forall x\)
\(\Leftrightarrow2\left|x-5\right|-4\ge-4\forall x\)
Dấu '=' xảy ra khi x=5
\(\left|x-2\right|\ge0;y+5\ge0\Rightarrow\left|x-2\right|+\left|y+5\right|\ge0\)
\(\Rightarrow\left|x-2\right|+\left|y+5\right|-15\ge-15\)
Dấu "=" xảy ra tại x=2;y=-5
Ta có: A= \(\left|x-2\right|+\left|y+5\right|-15\)
\(\hept{\begin{cases}\left|x-2\right|\ge0\\\left|y+5\right|\ge0\end{cases}\Rightarrow\left|x-2\right|+\left|y+5\right|-15\ge-15}\)
Để A nhỏ nhất thì Min (A) = -15 <=> x=2; y= -5
(Min là giá trị nhỏ nhất)
Bài làm:
Ta có: \(\hept{\begin{cases}\left(3x+27\right)^{20}\ge0\\\left(y-1\right)^2\ge0\end{cases}\left(\forall x,y\right)}\)
\(\Rightarrow\left(3x+27\right)^{20}+\left(y-1\right)^2\ge0\left(\forall x,y\right)\)
\(\Rightarrow B\ge2020\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(3x+27\right)^{20}=0\\\left(y-1\right)^2\end{cases}}\Rightarrow\hept{\begin{cases}x=-9\\y=1\end{cases}}\)
Vậy \(Min_B=2020\Leftrightarrow\hept{\begin{cases}x=-9\\y=1\end{cases}}\)
Ta có: \(\left(3x+27\right)^{20}\ge0\forall x\)
\(\left(y-1\right)^2\ge0\forall y\)
=> \(\left(3x+27\right)^{20}+\left(y-1\right)^2+2020\ge2020\forall x;y\)
=> \(B\ge2020\)
Vậy GTNN của B là 2020 <=> x=-9, y=1
Ta có \(\left(x+1\right)^{2022}\ge0\forall x\Rightarrow A=2020-\left(x+1\right)^{2022}\le2020\forall x\)
Dấu "=" xảy ra <=> x + 1 = 0
=> x = -1
Vậy GTLN của A là 2020 khi x = -1
b) Để C đạt GTLN
=> \(\frac{5}{\left(x+3\right)^2}\)lớn nhất
=> (x - 3)2 nhỏ nhất
=> (x - 3)2 = 1
=> \(\orbr{\begin{cases}x-3=1\\x-3=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=2\end{cases}}\)
Nếu x = 4 => C = 6
Vậy GTLN của C là 6 khi x = 4 hoặc x = 2
A = 2020 - ( x + 1 )2022
-( x + 1 )2022 ≤ 0 ∀ x => 2020 - ( x + 1 )2 ≤ 2020
Đẳng thức xảy ra <=> x + 1 = 0 => x = -1
=> MaxA = 2020 <=> x = -1
C = \(\frac{5}{\left(x-3\right)^2+1\left(^∗\right)}\)
Để C đạt GTLN => (*) = ( x - 3 )2 + 1 đạt GTNN
( x - 3 )2 ≥ 0 ∀ x => ( x - 3 )2 + 1 ≥ 1
=> Min(*) = 1 <=> x - 3 = 0 => x = 3
=> MaxC = 5 <=> x = 3
Ta có |2-3x| >=0 với mọi x
=> 2020+|2-3x| >=2020
Dấu "=" xảy ra <=> |2-3x|=0
<=> 3x=2
<=> \(x=\frac{2}{3}\)
Vậy MinA=2020 đạt được khi \(x=\frac{2}{3}\)