Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2
b)\(\overrightarrow{AN}=\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)
\(\overrightarrow{AK}=\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AN}\right)=\dfrac{1}{2}\left(\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\right)=\dfrac{3}{4}\overrightarrow{AB}+\dfrac{1}{4}\overrightarrow{AC}\)
d)\(S_{ABC}=24\Leftrightarrow\dfrac{1}{2}AN.BC=24\Leftrightarrow AN=6\left(cm\right)\)
\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\left|2.\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\right|=\left|2\overrightarrow{AN}\right|=2.AN=12\left(cm\right)\)
Bài 3:
b)\(\overrightarrow{BG}=\overrightarrow{BC}+\overrightarrow{CG}=\overrightarrow{BC}+\dfrac{3}{4}\overrightarrow{CA}=\overrightarrow{BC}+\dfrac{3}{4}\left(\overrightarrow{BA}-\overrightarrow{BC}\right)=\dfrac{1}{4}\overrightarrow{BC}+\dfrac{3}{4}\overrightarrow{BA}=\dfrac{1}{4}\overrightarrow{v}+\dfrac{3}{4}\overrightarrow{u}\)
c)Nhìn hình thấy ko thẳng nên đề sai
(E) có \(c^2=16-12=4\Rightarrow c=2\)
Hai tiêu điểm: \(F_1\left(-2;0\right)\) ; \(F\left(2;0\right)\)
\(\dfrac{1}{16}+\dfrac{y_M^2}{12}=1\Rightarrow y_M=\pm\dfrac{3\sqrt{5}}{2}\) (chỉ cần lấy 1 trong 2 giá trị do tính đối xứng qua trục hoành của elip)
\(\Rightarrow M\left(1;\dfrac{3\sqrt{5}}{2}\right)\Rightarrow\overrightarrow{MF_1}=\left(3;-\dfrac{3\sqrt{5}}{2}\right)\)
\(\Rightarrow MF_1=\sqrt{9+\dfrac{45}{4}}=\dfrac{9}{2}\) ; \(MF_2=2a-MF_1=8-\dfrac{9}{2}=\dfrac{7}{2}\)
Bài 2:
a: Gọi (d): y=ax+b
Vì (d)//Δ nên a=3
Vậy: (d): y=3x+b
Thay x=2 và y=3 vào (d), ta được:
\(3\cdot2+b=3\)
hay b=-3
b: Thay x=-1 và y=2 vào (d), ta được:
\(-3+b=2\)
hay b=5
Bài 5:
a: Vì (d) đi qua M(-1;3) và N(1;2) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}-a+b=3\\a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2b=5\\a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{5}{2}\\a=2-\dfrac{5}{2}=-\dfrac{1}{2}\end{matrix}\right.\)