K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2:

a: BC vuông góc SB; BC vuông góc AB

=>((SBC);(ABC))=góc ABS

tan ABS=SA/AB=căn 2

=>góc ABS=55 độ

b: AH vuông góc (SBC)

=>AH vuông góc HK

mà SB vuông góc AH

nên ((AHK);(SBA))=(SB;HK)=góc SHK

sin SHK=SK/SH

AC=AB*căn 2=a*căn 2

ΔSAC vuông cân tại A

=>SK=KA=KC=1/2*SC

=>SK=a

SA^2=SH*SB

SB=căn SA^2+AB^2=a*căn 3

=>SH=2a/căn 3

sin SHK=SK/SH=căn 3/2

=>góc SHK=60 độ

3:

a: d(A;(SBC))=AH=SA*AB/SC=a*căn 2/3

b: Kẻ BE vuông góc AC

=>E là trung điểm của AC

BE vuông góc AC;BE vuông góc SA

=>BE vuông góc (SAC)

=>d(B;(SAC))=BE=1/2*AC=a*căn 2/2

4:

a: (SB;(ABC))=góc SBA

tan SBA=căn 2

=>góc SBA=55 độ

b: (SC;(ABC))=góc SCA=45 độ

c: Kẻ HF vuông góc AB

=>HF//SA

=>HF vuông góc (ABC)

=>(AH;(ABC))=góc HAF=góc HAB=góc ASB

tan ASB=1/căn 2

=>góc ASB=35 độ

NV
13 tháng 6 2021

Tất cả k dưới đây đều là \(k\in Z\)

6.

\(\Leftrightarrow\sqrt{3}cot\left(3x-\dfrac{\pi}{3}\right)=1\)

\(\Leftrightarrow cot\left(3x-\dfrac{\pi}{3}\right)=\dfrac{1}{\sqrt{3}}\)

\(\Leftrightarrow cot\left(3x-\dfrac{\pi}{3}\right)=cot\left(\dfrac{\pi}{3}\right)\)

\(\Leftrightarrow3x-\dfrac{\pi}{3}=\dfrac{\pi}{3}+k\pi\)

\(\Leftrightarrow3x=\dfrac{2\pi}{3}+k\pi\)

\(\Leftrightarrow x=\dfrac{2\pi}{9}+\dfrac{k\pi}{3}\) 

NV
13 tháng 6 2021

7.

\(\Leftrightarrow\sqrt{3}tan\left(3x-15^0\right)=-1\)

\(\Leftrightarrow tan\left(3x-15^0\right)=-\dfrac{1}{\sqrt{3}}\)

\(\Leftrightarrow tan\left(3x-15^0\right)=tan\left(-30^0\right)\)

\(\Leftrightarrow3x-15^0=-30^0+k180^0\)

\(\Leftrightarrow3x=-15^0+k180^0\)

\(\Leftrightarrow x=-3^0+k60^0\)

NV
18 tháng 8 2021

MN là đường trung bình tam giác SAB \(\Rightarrow\) MN song song và bằng 1 nửa AB

Gọi P là trung điểm AD \(\Rightarrow PQ||AB\Rightarrow PQ||MN\Rightarrow P\in\left(MNQ\right)\)

\(\Rightarrow\) MNQP là thiết diện của chóp và (MNQ)

Do MN song song PQ \(\Rightarrow\) MNQP là hình thang

Lại có M, P là trung điểm SA, AD \(\Rightarrow MP=\dfrac{1}{2}SD\)

Tương tự \(NQ=\dfrac{1}{2}SC\Rightarrow MP=NQ=\dfrac{b\sqrt{3}}{2}\)

\(\Rightarrow\) Thiết diện là hình thang cân

\(PQ=AB=a\) ; \(MN=\dfrac{1}{2}PQ=\dfrac{a}{2}\)

Kẻ \(MH\perp PQ\Rightarrow PH=\dfrac{PQ-MN}{2}=\dfrac{a}{4}\)

\(\Rightarrow MH=\sqrt{MP^2-PH^2}=\sqrt{\dfrac{3b^2}{4}-\dfrac{a^2}{16}}\)

\(S=\dfrac{1}{2}\left(MN+PQ\right).MH=\dfrac{3a}{4}.\sqrt{\dfrac{3b^2}{4}-\dfrac{a^2}{16}}\)

NV
18 tháng 8 2021

undefined

24 tháng 8 2021

1.

Hàm số xác định khi:

\(\left\{{}\begin{matrix}sinx\ne0\\cosx-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne k\pi\\x\ne k2\pi\end{matrix}\right.\Leftrightarrow x\ne k\pi\)

2.

Hàm số xác định khi:

\(cosx\ne-1\Leftrightarrow x\ne\pi+k2\pi\)

3. 

\(cosx+1\ge0\Rightarrow\) Hàm số xác định với mọi x

4.

Hàm số xác định khi:

\(x^2-1\ne0\Leftrightarrow x\ne\pm1\)

5.

Hàm số xác định khi:

\(sin^2x-cos^2x\ne0\Leftrightarrow-cos2x\ne0\Leftrightarrow2x\ne\dfrac{\pi}{2}+k\pi\Leftrightarrow x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

6.

Hàm số xác định khi:

\(cos3x-cosx\ne0\Leftrightarrow cos3x\ne cosx\Leftrightarrow3x\ne\pm x+k2\pi\Leftrightarrow\left[{}\begin{matrix}x\ne k\pi\\x\ne\dfrac{k\pi}{2}\end{matrix}\right.\)

 

\(sin^2x-cos^2x\ne0\Leftrightarrow-cos2x\ne0\Leftrightarrow2x\ne\dfrac{\pi}{2}+k\pi\Leftrightarrow x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

14 tháng 12 2021

Câu d có thể liệt kê ra, hoặc làm như sau:

Dễ dàng nhận ra với lần đầu tiên tung ra mặt có số chấm là 1,2,5,6 thì chỉ có 1 khả năng để 2 lần cách nhau 2 chấm là 3,4,3,4

Còn với các chấm 3 và 4 xuất hiện ở lần đầu thì có 2 khả năng tung lần 2 để 2 lần gieo cách nhau 2 chấm

Như vậy n(C) = 4.1 + 2.2 = 8

1 tháng 5 2022

Ta có : \(f\left(2\right)=2a+b-6\)

\(\lim\limits_{x\rightarrow2^+}\dfrac{x-\sqrt{x+2}}{x^2-4}=\lim\limits_{x\rightarrow2^+}\dfrac{x^2-x-2}{\left(x-2\right)\left(x+2\right)\left(x+\sqrt{x+2}\right)}\)  

\(=\lim\limits_{x\rightarrow2^+}\dfrac{x+1}{\left(x+2\right)\left(x+\sqrt{x+2}\right)}=\dfrac{3}{16}\)

\(\lim\limits_{x\rightarrow2^-}x^2+ax+3b=4+2a+3b\) 

H/s liên tục tại điểm x = 2 \(\Leftrightarrow\dfrac{3}{16}=2a+3b+4=2a+b-6\)

Suy ra : \(a=\dfrac{179}{32};b=-5\) => t = a + b = 19/32 . Chọn C 

23 tháng 7 2021

2.B

3.C

4.A

10 tháng 9 2021

1.

a, \(sin2x-\sqrt{3}cos2x=-1\)

\(\Leftrightarrow\dfrac{1}{2}sin2x-\dfrac{\sqrt{3}}{2}cos2x=-\dfrac{1}{2}\)

\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{3}\right)=-\dfrac{1}{2}\)

\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{3}\right)=sin\left(-\dfrac{\pi}{6}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{3}=-\dfrac{\pi}{6}+k2\pi\\2x-\dfrac{\pi}{3}=\dfrac{7\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{12}+k\pi\\x=\dfrac{3\pi}{4}+k\pi\end{matrix}\right.\)

10 tháng 9 2021

Do tổng các hệ số thứ 1,2,3 là 46 nên ta có:\(C_n^0+C_n^1+C_n^2=46\)

\(\Leftrightarrow1+\dfrac{n!}{1!\left(n-1\right)!}+\dfrac{n!}{2!\left(n-2\right)!}=46\)

\(\Leftrightarrow1+n+\dfrac{\left(n-1\right)n}{2}=46\)

\(\Leftrightarrow n^2+n-90=0\)

\(\Leftrightarrow\left[{}\begin{matrix}n=9\\n=-10\left(loai\right)\end{matrix}\right.\)

Khai triển biểu thức: \(\left(x+\dfrac{1}{x}\right)^9\)

Hạng tử thứ k+1 trong biểu thức trên

\(\left(x+\dfrac{1}{x}\right)^9=C_9^{k+1}+\left(x^2\right)^{10-k}.\left(\dfrac{1}{x}\right)^{k+1}\)

đến đây mình chịu rùi hjhj b nào làm được giúp b kia với