Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, do nước chảy nên vận tốc ca nô bằng vận tốc dòng nước đẩy ca nô từ B->C =3m/s
\(=>t=\dfrac{300}{3}=100s\)
b,\(=>Vt=\dfrac{400}{100}=4m/s\)
như đã biết quãng AB=400m,quãng AC=300m
theo pytago\(=>AC=\sqrt{AB^2+BC^2}=\sqrt{400^2+300^2}=500m\)
\(=>V\)(so với bờ sông)\(=\dfrac{500}{t}=\dfrac{500}{100}=5m/s\)
Một ca nô đi ngang sông xuất phát từ A nhằm thẳng hướng đến B. A cách B một khoảng AB=400m.Do nước chảy nên ca nô đến vị trí C cách B một đoạn bằng BC=300m.Biết vận tốc nước chảy bằng 3m/s.
a,Tính thời gian ca nô chuyển động.
b,Tính vận tốc của ca no so với nước và so với bờ sông.
Gọi độ dài quãng sông, vận tốc ca nô, vận tốc của nước sông lần lượt là \(s_{AB},v,a\)
Thời gian ca nô chạy hết quãng sông khi nước sông đứng yên là: \(t=\dfrac{s_{AB}}{v}\left(h\right)\)
Thời gian ca nô chạy hết quãng sông khi xuôi dòng: \(t_1=\dfrac{s_{AB}}{v+a}\)
Theo đề ta có: \(t-t_1=\dfrac{3}{20}\left(h\right)\Rightarrow\dfrac{s_{AB}}{v}-\dfrac{s_{AB}}{v+a}=\dfrac{3}{20}\left(1\right)\)
Thời gian ca nô chạy hết quãng sông khi ngược dòng: \(t_2=\dfrac{s_{AB}}{v-a}=\dfrac{7}{5}\left(h\right)\left(2\right)\)
Chia vế với vế của (1) và (2) ta được: \(\left(v-a\right)\left(\dfrac{1}{v}-\dfrac{1}{v+a}\right)=\dfrac{3}{28}\)
\(\Rightarrow28a^2+3v^2-25av=0\)
Chia cả 2 vế cho tích \(v.a\), ta được: \(28\dfrac{a}{v}+3\dfrac{v}{a}-25=0\)
Đặt \(x=\dfrac{v}{a}\)
\(\Rightarrow28\dfrac{1}{x}+3x-25=0\)
\(\Rightarrow3x^2-25x+28=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=\dfrac{4}{3}\end{matrix}\right.\)
Với \(x=7\Rightarrow\dfrac{v}{a}=7\Rightarrow a=\dfrac{v}{7}\)
Thay vào (2) ta có: \(\dfrac{s_{AB}}{v}=\dfrac{6}{5}\Rightarrow t=\dfrac{6}{5}\left(h\right)=1,2\left(h\right)=1h12p\left(tm\right)\)
Với \(x=\dfrac{4}{3}\Rightarrow\dfrac{v}{a}=\dfrac{4}{3}\Rightarrow a=\dfrac{3v}{4}\)
Thay vào (2) ta có: \(\dfrac{s_{AB}}{v}=\dfrac{7}{20}\Rightarrow t=\dfrac{7}{20}\left(h\right)=21\left(p\right)\left(tm\right)\)
Gọi v1 là vận tốc của ca nô so với dòng nước, v2 vận tốc của nước so với bờ, v là vận tốc của ca nô so với bờ:
Khi xuôi dòng: v = v1 + v2 (0,50 điểm)
Khi ngược dòng : v' = v1 – v2 (0,50 điểm)
Giả sử B là vị trí ca nô bắt đầu đi ngược, ta có: AB = (v1 + v2) T (0,50 điểm)
Khi ca nô ở B giả sử chiếc bè ở C thì: AC = v2T (0,25 điểm)
Ca nô gặp bè đi ngược lại ở D thì:
l = AB – BD (0,25 điểm)
→ l = (v1 + v2) T – (v1 – v2)t (1) (0,50 điểm)
l = AC + CD (0,25 điểm)
→ l = v2T + v2t (2) (0,50 điểm)
Từ (1) và (2) ta có :
(v1 + v2)T – (v1 – v2) t = v2T + v2t (0,50 điểm)
→ t = T (3) (0,25 điểm)
Thay (3) vào (2), ta có :
l =2 v2 T (0,25 điểm)
→ v2 = l/2T (0,25 điểm)
Thay số: v2 = 6/2,1 = 3 km/h (0,25 điểm)
kocos hình vẽ ko kí hiệu
ko gọi nốt
sao biết a vs b vs c haizzzz
Cho nơi gặp nhau của hai xe là C, Đặt AC=s1 CB=s2 AB=s1+s2
Vận tốc trung bình của ca nô A là:
\(\upsilon_{tbA}=\dfrac{2s_1}{t_A}=\dfrac{2s_1}{t_1+t_1}=\dfrac{2s_1}{\dfrac{s_1}{\upsilon_1+\upsilon_2}+\dfrac{s_2}{\upsilon_1-\upsilon_2}}=\dfrac{\upsilon^2_1-\upsilon^2_2}{\upsilon_1}\) (1)
Vận tốc trung bình của ca nô B là:
\(\upsilon_{tbB}=\dfrac{2s_2}{t_B}=\dfrac{2s_2}{t_2+t_2}=\dfrac{2s_2}{\dfrac{s_2}{\upsilon_1-\upsilon_2}+\dfrac{s_2}{\upsilon_1+\upsilon_2}}=\dfrac{\upsilon^2_1-\upsilon^2_2}{\upsilon_1}\) (2)
Từ (1) và (2) \(\Rightarrow\upsilon_{tbA}=\upsilon_{tbB}\)
Gọi vận tốc dòng nước là x và vận tốc ca nô là y
Nếu x = 0 => V trung bình của ca nô là y
Nếu x>0 => V trung bình của ca nô là: ((x+y)+ (x-y)) /2 = x
=> Vận tốc dòng nước ko làm ảnh hưởng đến vận tốc trung bình của ca nô
Xin 1 like nha bạn. Thx bạn