K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2020

\(\Leftrightarrow5\left(x^2-\sqrt{2}x+\frac{1}{2}\right)=0\)

\(\Leftrightarrow x^2-\sqrt{2}x+\frac{1}{2}=0\)

\(\Delta=\left(-\sqrt{2}\right)^2-4.1.\frac{1}{2}=0\)

vì \(\Delta=0\)nên phương trình có nghiệm kép : \(x_1=x_2=-\frac{\sqrt{2}}{2}\)

vậy .........

12 tháng 4 2020

\(x_1=x_2=\frac{\sqrt{2}}{2}\)nhé mk ghi nhầm thông cảm 

5 tháng 6 2017

đầu tiên tính pen -ta >0 r suy ra điều kiện

phần tính  \(x^3+x_2^3=1\)theo hằng đẳng thức.r bạn sẽ ra thôi. cố lên

5 tháng 6 2017

\(x_1^3+x_2^3=\left(x1+x2\right)\left(\left(x1+x2\right)^2-3xy\right)\)

Bạn thay x1.x2 và x1+x2 theo m vào là tìm đc m

~ Có thể mai sau tôi sẽ ko giàu có, ko mồm mép nhưng tôi sẽ cố gắng hết sức để có đc những thứ đó.~ 

Chung quy lại là CHÁN

18 tháng 5 2021

`2)x^4+2x^3-x^2-2x+1=0`

`<=>x^4+2x^3+x^2-2x^2-2x+1=0`

`<=>(x^2+x)^2-2(x^2+x)+1=0`

`<=>(x^2+x-1)^2=0`

`<=>x^2+x-1=0`

`\Delta=1+4=5`

`=>x_{1,2}=(-1+-sqrt5)/2`

Vậy `S={(-1+sqrt5)/2,(-1+sqrt5)/2`

18 tháng 5 2021

`3)x^4-4x^3-9x^2+8x+4=0`

`<=>x^4-x^3-3x^3+3x^2-12x^2+12x-4x+4=0`

`<=>(x-1)(x^3-3x^2-12x-4)=0`

`<=>(x-1)(x^3+2x^2-5x^2-10x-2x-4)=0`

`<=>(x-1)(x+2)(x^2-5x-10)=0`

`+)x=1`

`+)x=-2`

`+)x^2-5x-10=0`

`Delta=25+40=65`

`=>x_{12}=(5+sqrt{65})/2`

25 tháng 9 2021

\(\sqrt{x^2-9}-3\sqrt{x-3}=0\left(đk:x\ge3\right)\)

\(\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\)

\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=9\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)

25 tháng 9 2021

\(ĐK:x\le-3;x\ge3\\ PT\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-3=0\\\sqrt{x+3}=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x+3=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)

20 tháng 5 2019

Trả lời: 

       Sorry, mk ms lớp 7,ko làm đc lớp 9!

20 tháng 5 2019

-Tìm \(\Delta\)để tìm điều kiện cho phương trình có 2 nghiệm

-Tìm tích \(x_1_{ }x_2=\frac{c}{a}\)để tìm đk cho 2 nghiệm khác 0

- Tìm tổng và tích 2 nghiệm theo định lí Vi-ét

\(\frac{x_1}{x_2}+\frac{x_2}{x_1}+\frac{5}{2}=0\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}=\frac{-5}{2}\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=\frac{-5}{2}\)

\(\Leftrightarrow\frac{\left(x1+x2\right)^2}{x1x2}=\frac{-1}{2}\)

Thay tích với tổng vào để tính nhé.Mình bận chỉ hướng dẫn ý chính. Có gì sai sót bỏ qua cho

ĐẶT x-1=a  , x+3=b   (a,b cùng dấu)

\(PT\Leftrightarrow ab+2a\sqrt{\frac{b}{a}}=8\)

\(\Leftrightarrow2a\sqrt{\frac{b}{a}}=8-ab\)

\(\Leftrightarrow4a^2\frac{b}{a}=64-16ab+a^2b^2\)

\(\Leftrightarrow a^2b^2-20ab+64=0\)

\(\Leftrightarrow\left(ab-10\right)^2-36=0\)

\(\Leftrightarrow\left(ab-4\right)\left(ab-16\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}ab=4\\ab=16\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)\left(x+3\right)=4\\\left(x-1\right)\left(x+3\right)=16\end{cases}}\)

Đến đây đơn giản rồi bn tự giải nhé

26 tháng 7 2019

ĐK:....\(\frac{x+3}{x-1}\ge0\)

<=> \(\left(x-1\right)\left(x+3\right)+2\sqrt{\left(x-1\right)\left(x+3\right)}+1=9\)

<=> \(\left(\sqrt{\left(x-1\right)\left(x+3\right)}+1\right)^2=9\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{\left(x-1\right)\left(x+3\right)}=2\\\sqrt{\left(x-1\right)\left(x+3\right)}=-4\left(loai\right)\end{cases}}\)

\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=4\)

Em tự làm tiếp nhé