Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\left(-1\right)^{2n}.\left(-1\right)^n.\left(-1\right)^{n+1}=\left(-1\right)^{3n+1}\)
b) \(B=\left(10000-1^2\right)\left(10000-2^2\right).........\left(10000-1000^2\right)\)
\(=\left(10000-1^2\right)\left(10000-2^2\right)......\left(10000-100^2\right)....\left(10000-1000^2\right)\)
\(=\left(10000-1^2\right)\left(10000-2^2\right).....\left(10000-10000\right).....\left(10000-1000^2\right)=0\)
c) \(C=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)..........\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right).....\left(\frac{1}{125}-\frac{1}{5^3}\right)......\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)........\left(\frac{1}{125}-\frac{1}{125}\right).....\left(\frac{1}{125}-\frac{1}{25^3}\right)=0\)
d) \(D=1999^{\left(1000-1^3\right)\left(1000-2^3\right)........\left(1000-10^3\right)}\)
\(=1999^{\left(1000-1^3\right)\left(1000-2^3\right)........\left(1000-1000\right)}=1999^0=1\)
#)Giải :
a)\(2009^{\left(1000-1^3\right)\left(1000-2^3\right)...\left(1000-15^3\right)}=2009^{\left(1000-1^3\right)...\left(1000-10^3\right)...\left(1000-15^3\right)}=2009^0=1\)
b)\(\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)=\left(\frac{1}{125}-\frac{1}{1^3}\right)...\left(\frac{1}{125}-\frac{1}{5^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)=\left(\frac{1}{125}-\frac{1}{1^3}\right)...0...\left(\frac{1}{125}-\frac{1}{25^3}\right)=0\)
\(A=\left(-1\right)^{2n}.\left(-1\right)^n.\left(-1\right)^{n+1}\)
\(A=\left(-1\right)^{2n+n+n+1}\)
\(A=\left(-1\right)^{4n+1}\)
\(B=\left(10000-1^2\right).\left(10000-2^2\right)...\left(10000-1000^2\right)\)
\(B=\left(10000-1^2\right)\left(10000-2^2\right)...\left(10000-100^2\right)...\left(10000-1000^2\right)\)
\(B=\left(10000-1^2\right)\left(10000-2^2\right)...\left(10000-10000\right)...\left(10000-1000^2\right)\)
\(B=\left(10000-1^2\right)\left(10000-2^2\right)...0\left(10000-1000^2\right)\)
\(B=0\)
\(C=\left(\dfrac{1}{125}-\dfrac{1}{1^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{2^3}\right)...\left(\dfrac{1}{125}-\dfrac{1}{25^3}\right)\)
\(C=\left(\dfrac{1}{125}-\dfrac{1}{1^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{2^3}\right)...\left(\dfrac{1}{125}-\dfrac{1}{5^3}\right)...\left(\dfrac{1}{125}-\dfrac{1}{25^3}\right)\)
\(C=\left(\dfrac{1}{125}-\dfrac{1}{1^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{2^3}\right)...0....\left(\dfrac{1}{125}-\dfrac{1}{25^3}\right)\)
\(C=0\)
\(D=1999^{\left(1000-1^3\right)\left(1000-2^3\right)...\left(1000-10^3\right)}\)
\(D=1999^{\left(1000-1^3\right)\left(1000-2^3\right)...\left(1000-1000\right)}\)
\(D=1999^{\left(1000-1^3\right)\left(1000-2^3\right)...0}\)
\(D=1999^0\)
\(D=1\)
3.
\(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2018}=0\)
Ta luôn có: \(\left(2x-5\right)^{2018}\ge0\forall x;\left(3y+4\right)\ge0\forall y\)
Mà \(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2018}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(2x-5\right)^{2018}=0\\\left(3y+4\right)^{2018}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x-5=0\\3y+4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=5\\3y=-4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\y=\frac{-4}{3}\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(\frac{5}{2};\frac{-4}{3}\right)\)
c: Ta có: \(\dfrac{2}{5}\cdot\left[\left(\dfrac{3}{5}\right)^2:\left(-\dfrac{1}{5}\right)^2-7\right]\cdot\left(1000\right)^0\cdot\left|-\dfrac{11}{15}\right|\)
\(=\dfrac{2}{5}\cdot\left(\dfrac{9}{25}:\dfrac{1}{25}-7\right)\cdot1\cdot\dfrac{11}{15}\)
\(=\dfrac{2}{5}\cdot\dfrac{11}{15}\cdot2\)
\(=\dfrac{44}{75}\)
_Minh ngụy_
a) ( 1000-13) . ( 1000-23) . ( 1000-33) ...( 1000 -503)
\(=\left(1000-1^3\right)\cdot\left(1000-2^3\right)\cdot...\cdot\left(1000-10^3\right)\cdot.....\cdot\left(1000-50^3\right)\)
\(=\left(1000-1^3\right)\cdot\left(100-2^3\right)\cdot...\cdot\left(1000-1000\right)\cdot...\cdot\left(1000-50^3\right)\)
\(=\left(1000-1^3\right)\cdot\left(1000-2^3\right)\cdot......\cdot0\cdot......\left(1000-50^3\right)\)
\(=0\)
b) (1/125-1/13) . (1/125-1/23).( 1/125-1/33)...( 1/125-1/253)
\(\left(\frac{1}{125}-\frac{1}{1^3}\right)\cdot\left(\frac{1}{125}-\frac{1}{2^3}\right)\cdot...\cdot\left(\frac{1}{125}-\frac{1}{5^3}\right)\cdot...\cdot\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=\left(\frac{1}{125}-\frac{1}{1^3}\right)\cdot\left(\frac{1}{125}-\frac{1}{2^3}\right)\cdot...\cdot\left(\frac{1}{125}-\frac{1}{125}\right)\cdot...\cdot\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=\left(\frac{1}{125}-\frac{1}{1^3}\right)\cdot\left(\frac{1}{125}-\frac{1}{2^3}\right)\cdot....\cdot0\cdot...\cdot\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=0\)