Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(x.\left(x^2+x+1\right)-x^2.\left(1+x\right)-x-7\)
\(=x^3+x^2+x-x^2-x^3-x-7\)
\(=\left(x^3-x^3\right)-\left(x^2-x^2\right)-\left(x-x\right)-7\)
\(=-7\)
Do đó giá trị của biểu thức không phụ thuộc vào biến
Vậy...
\(\left(x+4\right)\left(x^2-4x+16\right)-x\left(x-5\right)\left(x+5\right)=264\)
\(\Leftrightarrow x^3+64-x^3+25x=264\)
\(\Leftrightarrow25x=200\)
hay x=8
Bài giải
\(\frac{1}{2}\left(x+1\right)+\frac{1}{4}\left(x+3\right)=3\cdot\frac{1}{3}\cdot\left(x+20\right)\)
\(\frac{1}{2}\left[\left(x+1\right)+\frac{1}{2}\left(x+3\right)\right]=x+20\)
\(\frac{1}{2}\left[x+1+\frac{1}{2}x+\frac{3}{2}\right]=x+20\)
\(\frac{1}{2}\left[x\left(1+\frac{1}{2}\right)+1+\frac{3}{2}\right]=x+20\)
\(\frac{1}{2}\left[\frac{3}{2}x+\frac{5}{2}\right]=x+20\)
\(\frac{3}{4}x+\frac{5}{4}=x+20\)
\(\frac{3}{4}x-x=20-\frac{5}{4}\)
\(\frac{-1}{4}x=\frac{75}{4}\)
\(x=\frac{75}{4}\text{ : }\frac{-1}{4}\)
\(x=-75\)
\(\frac{1}{2}\left(x+1\right)+\frac{1}{4}\left(x+3\right)=3\cdot\frac{1}{3}\cdot\left(x+20\right)\)
\(\frac{1}{2}\left[\left(x+1\right)+\frac{1}{2}\left(x+3\right)\right]=x+20\)
\(\frac{1}{2}\left[x+1+\frac{1}{2}x+\frac{3}{2}\right]=x+20\)
\(\frac{1}{2}\left[x\left(1+\frac{1}{2}\right)+1+\frac{3}{2}\right]=x+20\)
\(\frac{1}{2}\left[\frac{3}{2}x+\frac{5}{2}\right]=x+20\)
\(\frac{3}{4}x+\frac{5}{4}=x+20\)
\(\frac{3}{4}x-x=20-\frac{5}{4}\)
\(\frac{-1}{4}x=\frac{75}{4}\)
\(x=\frac{75}{4}\text{ : }\frac{-1}{4}\)
\(x=-75\)
\(=\left(x^3-2x^2+x+2x^2-4x+2-2x+7\right):\left(x^2-2x+1\right)\\ =\left[\left(x^2-2x+1\right)\left(x+2\right)-2x+7\right]:\left(x^2-2x+1\right)\\ =x+2\left(dư:-2x+7\right)\)
\(\left|2x-3\right|=3-2x\)
\(ĐK:x\le\dfrac{3}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=3-2x\\3-2x=3-2x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\0=0\left(đúng\right)\end{matrix}\right.\)
Vậy \(S=\left\{x\in R;x=\dfrac{3}{2}\right\}\)