Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta'=16-\left(3m+1\right)\ge0\Rightarrow m\le5\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-8\\x_1x_2=3m+1\end{matrix}\right.\)
Kết hợp điều kiện đề bài ta được: \(\left\{{}\begin{matrix}x_1+x_2=-8\\5x_1-x_2=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=-8\\6x_1=-6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-1\\x_2=-7\end{matrix}\right.\)
Thế vào \(x_1x_2=3m+1\)
\(\Rightarrow\left(-1\right).\left(-7\right)=3m+1\)
\(\Rightarrow m=2\) (thỏa mãn)
\(x+2\sqrt{x}-3\\ =x-\sqrt{x}+3\sqrt{x}-3\\ =\sqrt{x}\left(\sqrt{x}-1\right)+3\left(\sqrt{x}-1\right)\\ =\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)\)
\(A=\left(\dfrac{2\sqrt{x}+x+1}{\sqrt{x}+1}\right)\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right):\left(1-\sqrt{x}\right)\)
(ĐKXĐ: x\(\ge\) 0 ; x \(\ne\) 1 )
\(=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}+1}\left(1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right):\left(1-\sqrt{x}\right)\)
\(=\left(\sqrt{x}+1\right)\left(1-\sqrt{x}\right):\left(1-\sqrt{x}\right)\)
\(=\sqrt{x}+1\)
\(A=\left(\dfrac{2\sqrt{x}+x+1}{\sqrt{x}+1}\right)\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right):\left(1-\sqrt{x}\right)=\left(\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}+1}\right)\left(1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right):\left(1-\sqrt{x}\right)=\left(\sqrt{x}+1\right)\left(1-\sqrt{x}\right)\left(1-\sqrt{x}\right)=\left(1-x\right)\left(1-\sqrt{x}\right)=1-\sqrt{x}-x+x\sqrt{x}=x\sqrt{x}-x-\sqrt{x}+1\)
m2 -8m -16 =0
m2 -2.4m -4\(^2\) =0
(m - 4)\(^2\) = 0
=> m -4 = 0
=> m = 4
HT
m2 - 8m - 16 = 0 <=> m2 - 8m + 16 - 32 = 0
<=> ( m - 4 )2 - ( 4√2 )2 = 0 <=> ( m - 4 - 4√2 )( m - 4 + 4√2 ) = 0
<=> m = 4 ± 4√2